本文主要介绍了Avnet ZUBoard 1CG开发板的特性、架构、硬件单元等概念,并对如何使用以太网接口和串口连接开发板进行基本介绍,同时辅以两个应用例程演示其功能。 ...
机器学习与传统编程的一个重要区别在于机器学习比传统编程涉及了更多的数学知识。不过,随着机器学习的飞速发展,各种框架应运而生,在数据分析等应用中使用机器学习时,使用现成的库和框架成为常态,似乎越来越不需要数学知识了。 其实,现成的库和框架只是帮助我们简化机器学习的开发任务,如果想要对模型训练结果进行调 ...
# -*- coding: utf-8 -*- """ Created on Wed Aug 7 20:50:03 2024 @author: 田雨 """ # -*- coding: UTF-8 -*- # 导入iris数据集 from sklearn.datasets import load_i ...
0.前言 本文主要介绍了最小二乘法公式推导,并且使用Python语言实现线性拟合。 读者需要具备高等数学、线性代数、Python编程知识。 请读者按照文章顺序阅读。 绘图软件为:geogebra5。 1.原理推导 1.1应用 最小二乘法在购房中的应用通常涉及房价预测和房屋定价方面。这种统计方法通过拟 ...
机器学习中,常常见到两个函数名称:sigmoid和softmax。前者在神经网络中反复出现,也被称为神经元的激活函数;后者则出现在很多分类算法中,尤其是多分类的场景,用来判断哪种分类结果的概率更大。 本文主要介绍这两个函数的定义,形态,在算法中的作用,以及两个函数之间的联系。 1. sigmoid函 ...
提取PPG特征之——whisper库的使用(2.1) 1 安装对应的包 方法一(自用): 直接pip即可: pip install openai-whisper 成功后如下图所示 方法二: 当时用了他这个方法环境直接崩了,已老实 conda install -c conda-forge ffmpeg ...
PyTorch 是一个开源的机器学习框架,可以方便地进行神经网络模型训练和推理。本文基于 PyTorch 演示了一个非常简单但是功能齐全的神经网络训练过程,无论模型权重有多大,使用 TyTorch 训练的过程是类似的,期望本文能启到抛砖引玉的作用…… ...
目录1. 判断满二叉树2. 给定一个数,求该数的平方根,不用内置函数3. GAN model 内容4. Diffusion model 内容5. 二叉树的创建,插入和删除6. Linux相关命令:7. 快速排序8. xgboost和deepfm的性能。9. 判断链表里是否有环10. HDFS相关基础 ...
从DDPM到DDIM(四) 预测噪声与后处理 前情回顾 下图展示了DDPM的双向马尔可夫模型。 训练目标。最大化证据下界等价于最小化以下损失函数: \[\boldsymbol{\theta}^*=\underset{\boldsymbol{\theta}}{\operatorname{argmin} ...
从DDPM到DDIM(三) DDPM的训练与推理 前情回顾 首先还是回顾一下之前讨论的成果。 扩散模型的结构和各个概率模型的意义。下图展示了DDPM的双向马尔可夫模型。 其中\(\mathbf{x}_T\)代表纯高斯噪声,\(\mathbf{x}_t, 0 < t < T\) 代表中间的隐变量, \ ...
从DDPM到DDIM (一) 极大似然估计与证据下界 现在网络上关于DDPM和DDIM的讲解有很多,但无论什么样的讲解,都不如自己推到一遍来的痛快。笔者希望就这篇文章,从头到尾对扩散模型做一次完整的推导。本文的很多部分都参考了 Calvin Luo[1] 和 Stanley Chan[2] 写的经典 ...
本教程详细介绍了 LoRA 参数高效微调技术,包括数据集准备和处理、模型加载、参数设置等,然后以 Qwen2-0.5B 预训练模型实践,进行了文本分类能力微调,微调过程通过 SwanLab 可视化界面查看,最终微调模型进行测试数据评估…… ...
背景: 1.介绍FL 2.介绍NAS(讨论范围限制在CNN) 宏搜索空间覆盖整个CNN模型,例如,隐藏层的数量n、操作类型(例如,卷积)和快捷连接的链接方法 微观搜索空间仅覆盖整个模型结构中重复的基序或细胞。并且这些单元在复杂的多分支操作中构建 介绍RT(强化学习)在NAS中的运用,因为RT要模拟采 ...
本文介绍在tensorflow库中,用于动态调整神经网络的学习率的一种方法——指数衰减ExponentialDecay()策略的参数含义及其具体用法~ ...
大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」 今日 220+/10000 在 回归求助 & 送教程这篇文章中,我放出来最近在做的揭榜挂帅的 PPT 初稿,很多读者表示感兴趣,还有小伙伴问啥时候出书,更有同学贴心的给对象要了份PPT( ...
1. RNN(Recurrent Neural Network) 时间轴 1986年,RNN 模型首次由 David Rumelhart 等人提出,旨在处理序列数据。 关键技术 循环结构 序列处理 长短时记忆网络(LSTM)和门控循环单元(GRU) 核心原理 RNN 通过循环结构让网络记住以前的输入 ...
前段时间写过一篇介绍神经网络的入门文章:神经网络极简入门。那篇文章介绍了神经网络中的基本概念和原理,并附加了一个示例演示如何实现一个简单的神经网络。 不过,在那篇文章中并没有详细介绍神经网络在训练时,是如何一步步找到每个神经元的最优权重的。本篇介绍神经网络训练时,常用的一种权重更新的方式--梯度下降 ...
图像增强方法在数字图像处理中占有重要地位,它能够有效提高图像的视觉效果,增强图像的细节信息,从而在医学、遥感、工业检测等多个领域发挥重要作用 1. 空间域增强方法 空间域增强方法是通过直接对图像像素进行操作来实现图像增强的技术。以下是几种常见的空间域增强方法: 1.1 直方图均衡化 直方图均衡化是一 ...
大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」 今日 210+/10000,内含 Pandas 是一个强大的数据分析库,广泛应用于科学研究、金融分析、商业智能等领域。它提供了高效的数据结构和数据分析工具,使得处理和分析数据变得更加简单 ...
大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」 今日 216/10000 抱个拳,送个礼 神经网络设计与选择 参数初始化与优化 学习率调整与正则化 数据预处理与标准化 训练过程与监控 特定模型技巧 其他训练技巧 1. 神经网络设计与选 ...