在机器学习领域,规则学习是一颗独特的明珠--它不像深度学习那样神秘,而是用人类可读的"如果-那么"规则来做出决策。 想象一下医生通过一系列症状判断疾病,或者风控系统根据用户行为拒绝贷款,规则学习的魅力正在于这种透明可解释性。 1. 基本概念 规则学习的目标是从数据中提取出一系列的规则,这些规则能够帮 ...
1.账号申请成功后linux系统默认用户密码为:hpc@手机号 2.使用anaconda镜像源的时候不能参考《Anaconda_PyPI镜像使用帮助》教程,要参考下面链接:https://hpcdocs.xjtu.edu.cn/software/python/ 3.同时再把镜像源换成清华镜像,西安交 ...
当复杂世界的不确定性遇上图的结构化表达,概率图模型应运而生。 它可以帮助我们理解和建模变量之间的复杂关系。 想象一下,你正在尝试预测明天的天气,你需要考虑温度、湿度、气压等多种因素,这些因素之间存在着复杂的相互作用。 概率图模型就像是一张“关系网”,能够清晰地表示这些因素之间的依赖关系,并帮助我们进 ...
在数据处理的世界里,我们常常会遇到这样的问题:数据量太大,存储和传输成本高昂,但又不能丢失重要信息。 这时候,压缩感知(Compressive Sensing,CS)就像一位神奇的“数据魔法师”,能够帮助我们高效地处理数据。 本文我们就来深入了解一下压缩感知是什么,它的原理和作用,以及如何用代码实现 ...
在机器学习的世界里,我们常常会遇到各种复杂的数据,它们可能包含大量的特征,但其中真正有用的信息却很少。 这就像是在一个杂乱无章的房间里,我们只需要找到那些真正重要的物品,而忽略掉那些无关紧要的杂物。 稀疏表示和字典学习就像是整理房间的工具,帮助我们找到那些关键的信息,让数据变得更加简洁和有用。 1. ...
想象你要做一道美食,面对琳琅满目的食材,优秀的厨师不会把所有原料都扔进锅里,而是会选择最适合的几种。 在机器学习中,特征选择就是这个挑选过程,从原始数据中选择对预测目标最有用的特征(列),就像挑选优质食材一样重要。 1. 什么是特征选择? 特征选择是机器学习中一个至关重要的步骤,它从原始数据的众多特 ...
度量学习是一种神奇的机器学习技术,它的核心目标就是教会机器如何更好地衡量不同数据点之间的 “距离” 。 在我们日常生活中,距离这个概念很直观,比如两点之间的直线距离。 但在机器学习的世界里,数据通常是高维的,比如一张图片可以被表示为一个包含像素值的高维向量。 那么,如何衡量这些高维数据之间的相似性或 ...
在机器学习和数据分析中,数据的维度常常是一个让人头疼的问题。 想象一下,你面前有一张包含成千上万列特征的表格,每一列都可能是一个重要的信息源,但同时也会让计算变得异常复杂。 这时候,降维技术就派上用场了!它可以帮助我们把高维数据“瘦身”成低维数据,同时尽可能保留有用的信息。 今天,介绍几种常见的降维 ...
在数据分析和机器学习领域,聚类是一种非常重要的无监督学习方法,它可以帮助我们发现数据中的内在结构,将相似的数据点分组到一起。 本文将介绍几种常见的聚类算法,包括原型聚类(如 k-均值、学习向量量化、高斯混合聚类)、密度聚类(DBSCAN)和层次聚类(AGNES)。 通过浅显易懂的方式介绍它们的原理, ...
第零章 积分 变上限积分:设积分形式为\(\boxed{I(x)=\int_{v(x)}^{u(x)}f(t,x)\text{d}t}\),则对\(I(x)\)求导得: \[\boxed{\frac{\text{d}I}{\text{d}x} = f(v(x), x) \cdot v'(x) - f ...
起初的原因是,想要跑一个用到了mamba_ssm的项目,故尝试在wsl中配置mamba_ssm库。提示需要`pip install mamba-ssm`后报错频繁,遇到了许多问题。查阅了很多blog和issue,安装了很多次环境,仿佛已经对注意事项倒背如流,但是就是无法解决最后的**selectiv... ...
在聚类分析中,距离度量是核心概念之一,它决定了数据点之间的相似性或差异性,从而影响聚类结果的质量。 选择合适的距离度量方法,就像为数据选择合适的“观察视角”,能够帮助我们发现隐藏的模式结构。 本文将详细介绍几种常用的聚类距离度量方法,包括它们的原理、代码实现,以及这些方法满足的基本性质。 1. 常用 ...
在聚类分析中,我们常常需要评估聚类结果的质量。 外部指标是一种通过与已知的“真实标签”进行比较来评估聚类性能的方法。 这些指标可以帮助我们判断聚类算法是否能够准确地将数据划分为有意义的类别。 本文将介绍几种常见的外部指标,包括 Jaccard 系数、FM 指数、Rand 指数、DB 指数和 Dunn ...
集成学习虽然能够通过组合多个学习器来提高预测性能,然而,如果这些学习器过于相似,集成的效果可能并不理想。 因此,增强学习器的多样性是提升集成学习性能的关键。 多样性带来的优势在于: 群体智慧原理:多样化的模型可以从不同角度捕捉数据规律 误差互补效应:不同模型的错误模式不同,投票后误差相互抵消 防止过 ...
在集成学习中,多样性是一个关键概念,简单来说,多样性衡量的是各个学习器之间的差异程度。 如果学习器之间差异很大,那么它们的组合就更有可能覆盖更多的情况,从而提高集成模型的性能, 就像足球队需要不同位置的球员配合一样。 下面介绍四种常用的多样性度量方法及其实现。 1. 不合度量(Disagreemen ...
集成学习通过组合多个学习器的预测结果,达到超越单个学习器的效果。 就像医生会诊时综合多位专家的意见,集成学习的关键在于如何有效整合不同学习器的判断。 这些学习器可以是不同类型的模型,比如决策树、支持向量机、神经网络等。通过合理地组合这些学习器,我们可以获得比单一模型更好的预测效果。 今天,重点介绍4 ...
在机器学习的世界里,集成学习(Ensemble Learning)是一种强大的技术,它通过组合多个模型来提高预测性能。 集成学习通过组合多个基学习器的预测结果,获得比单一模型更优秀的性能。其核心思想是"三个臭皮匠顶个诸葛亮",主要分为两大流派:Boosting(提升)和Bagging(装袋)。 本文 ...
在机器学习分类任务中,朴素贝叶斯(Naive Bayes)因其简单高效而广受欢迎,但它的“朴素”之名也暗示了其局限性。 为了突破这一局限,半朴素贝叶斯(Semi-Naive Bayes) 应运而生。 本文将详细介绍朴素贝叶斯和半朴素贝叶斯的原理、应用场景以及如何使用scikit-learn库实现它们 ...
在统计学的世界里,参数估计一直是数据分析的核心任务之一。 极大似然估计(MLE)作为一种经典的参数估计方法,被广泛应用于各种领域。 然而,极大似然估计并非只有一种实现方式,它在频率学派和贝叶斯学派中有着不同的理论基础和应用场景。 本文将探讨这两种学派的区别,并通过实际代码示例展示它们在极大似然估计中 ...
本篇笔记总结了最基本,同时也是推导比较容易理解的机器学习中线性模型的部分。 许多非线性模型也是在线性模型的基础上做了结构等方面的补充和引入。 本笔记随学习进度的跟进将持续更新:) 基本形式 \[f(\bf{x}) = \bf{\omega^T x + b} \]线性回归 主要内容:主要是学得\(\o ...