Description

A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, ..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y. The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.
 

Input

abcfbc abfcab programming contest abcd mnp
 

Output

4 2 0
 

Sample Input

abcfbc abfcab programming contest abcd mnp
 

Sample Output

4 2 0
 
最裸的最长公共子序列不解释
View Code
 1 #include<stdio.h>
2 #include<stdlib.h>
3 #include<string.h>
4 char str1[10005], str2[10005];
5 int dp[1005][1005];
6
7 int maxx( int x, int y )
8 {
9 return x > y ? x : y;
10 }
11
12 int deal( int len1, int len2 )
13 {
14 int len = maxx( len1, len2 );
15 for( int i = 0; i < len; i++ )
16 {
17 dp[i][0] = 0;
18 dp[0][i] = 0;
19 }
20 for( int i = 1; i <= len1; i++ )
21 for( int j = 1; j <= len2; j++ )
22 {
23 if( str1[i-1] == str2[j-1] )
24 {
25 dp[i][j] = dp[i-1][j-1]+1;
26 }
27 else
28 {
29 dp[i][j] = maxx( dp[i][j-1], dp[i-1][j] );
30 }
31 }
32 return dp[len1][len2];
33 }
34
35 int main()
36 {
37 while( scanf( "%s%s", str1, str2 ) == 2 )
38 {
39 int len1 = strlen( str1 );
40 int len2 = strlen( str2 );
41 printf( "%d\n", deal( len1, len2 ) );
42 }
43 }

posted on 2012-03-28 22:34  狸の舞  阅读(218)  评论(0编辑  收藏  举报