序言和数据集

 1 %matplotlib notebook
 2 import numpy as np
 3 import pandas as pd
 4 import seaborn as sn
 5 import matplotlib.pyplot as plt
 6 
 7 from sklearn.model_selection import train_test_split
 8 from sklearn.datasets import make_classification, make_blobs
 9 from matplotlib.colors import ListedColormap
10 from sklearn.datasets import load_breast_cancer
11 from adspy_shared_utilities import load_crime_dataset
12 
13 
14 cmap_bold = ListedColormap(['#FFFF00', '#00FF00', '#0000FF','#000000'])
15 
16 # fruits dataset
17 fruits = pd.read_table('fruit_data_with_colors.txt')
18 
19 feature_names_fruits = ['height', 'width', 'mass', 'color_score']
20 X_fruits = fruits[feature_names_fruits]
21 y_fruits = fruits['fruit_label']
22 target_names_fruits = ['apple', 'mandarin', 'orange', 'lemon']
23 
24 X_fruits_2d = fruits[['height', 'width']]
25 y_fruits_2d = fruits['fruit_label']
26 
27 # synthetic dataset for simple regression
28 from sklearn.datasets import make_regression
29 plt.figure()
30 plt.title('Sample regression problem with one input variable')
31 X_R1, y_R1 = make_regression(n_samples = 100, n_features=1,
32                             n_informative=1, bias = 150.0,
33                             noise = 30, random_state=0)
34 plt.scatter(X_R1, y_R1, marker= 'o', s=50)
35 plt.show()
36 
37 # synthetic dataset for more complex regression
38 from sklearn.datasets import make_friedman1
39 plt.figure()
40 plt.title('Complex regression problem with one input variable')
41 X_F1, y_F1 = make_friedman1(n_samples = 100, n_features = 7,
42                            random_state=0)
43 
44 plt.scatter(X_F1[:, 2], y_F1, marker= 'o', s=50)
45 plt.show()
46 
47 # synthetic dataset for classification (binary)
48 plt.figure()
49 plt.title('Sample binary classification problem with two informative features')
50 X_C2, y_C2 = make_classification(n_samples = 100, n_features=2,
51                                 n_redundant=0, n_informative=2,
52                                 n_clusters_per_class=1, flip_y = 0.1,
53                                 class_sep = 0.5, random_state=0)
54 plt.scatter(X_C2[:, 0], X_C2[:, 1], marker= 'o',
55            c=y_C2, s=50, cmap=cmap_bold)
56 plt.show()
57 
58 # more difficult synthetic dataset for classification (binary)
59 # with classes that are not linearly separable
60 X_D2, y_D2 = make_blobs(n_samples = 100, n_features = 2,
61                        centers = 8, cluster_std = 1.3,
62                        random_state = 4)
63 y_D2 = y_D2 % 2
64 plt.figure()
65 plt.title('Sample binary classification problem with non-linearly separable classes')
66 plt.scatter(X_D2[:,0], X_D2[:,1], c=y_D2,
67            marker= 'o', s=50, cmap=cmap_bold)
68 plt.show()
69 
70 # Breast cancer dataset for classification
71 cancer = load_breast_cancer()
72 (X_cancer, y_cancer) = load_breast_cancer(return_X_y = True)
73 
74 # Communities and Crime dataset
75 (X_crime, y_crime) = load_crime_dataset()

贝叶斯分类器

1 from sklearn.naive_bayes import GaussianNB
2 from adspy_shared_utilities import plot_class_regions_for_classifier
3 
4 X_train, X_test, y_train, y_test = train_test_split(X_C2, y_C2, random_state=0)
5 
6 nbclf = GaussianNB().fit(X_train, y_train)
7 plot_class_regions_for_classifier(nbclf, X_train, y_train, X_test, y_test,
8                                  'Gaussian Naive Bayes classifier: Dataset 1')

1 X_train, X_test, y_train, y_test = train_test_split(X_D2, y_D2,
2                                                    random_state=0)
3 
4 nbclf = GaussianNB().fit(X_train, y_train)
5 plot_class_regions_for_classifier(nbclf, X_train, y_train, X_test, y_test,
6                                  'Gaussian Naive Bayes classifier: Dataset 2')

Application to a real-world dataset

1 X_train, X_test, y_train, y_test = train_test_split(X_cancer, y_cancer, random_state = 0)
2 
3 nbclf = GaussianNB().fit(X_train, y_train)
4 print('Breast cancer dataset')
5 print('Accuracy of GaussianNB classifier on training set: {:.2f}'
6      .format(nbclf.score(X_train, y_train)))
7 print('Accuracy of GaussianNB classifier on test set: {:.2f}'
8      .format(nbclf.score(X_test, y_test)))
Breast cancer dataset
Accuracy of GaussianNB classifier on training set: 0.95
Accuracy of GaussianNB classifier on test set: 0.94

决策树集成

随机森林

 

 1 from sklearn.ensemble import RandomForestClassifier
 2 from sklearn.model_selection import train_test_split
 3 from adspy_shared_utilities import plot_class_regions_for_classifier_subplot
 4 
 5 X_train, X_test, y_train, y_test = train_test_split(X_D2, y_D2,
 6                                                    random_state = 0)
 7 fig, subaxes = plt.subplots(1, 1, figsize=(6, 6))
 8 
 9 clf = RandomForestClassifier().fit(X_train, y_train)
10 title = 'Random Forest Classifier, complex binary dataset, default settings'
11 plot_class_regions_for_classifier_subplot(clf, X_train, y_train, X_test,
12                                          y_test, title, subaxes)
13 
14 plt.show()

Random forest: Fruit dataset

 1 from sklearn.ensemble import RandomForestClassifier
 2 from sklearn.model_selection import train_test_split
 3 from adspy_shared_utilities import plot_class_regions_for_classifier_subplot
 4 
 5 X_train, X_test, y_train, y_test = train_test_split(X_fruits.as_matrix(),
 6                                                    y_fruits.as_matrix(),
 7                                                    random_state = 0)
 8 fig, subaxes = plt.subplots(6, 1, figsize=(6, 32))
 9 
10 title = 'Random Forest, fruits dataset, default settings'
11 pair_list = [[0,1], [0,2], [0,3], [1,2], [1,3], [2,3]]
12 
13 for pair, axis in zip(pair_list, subaxes):
14     X = X_train[:, pair]
15     y = y_train
16     
17     clf = RandomForestClassifier().fit(X, y)
18     plot_class_regions_for_classifier_subplot(clf, X, y, None,
19                                              None, title, axis,
20                                              target_names_fruits)
21     
22     axis.set_xlabel(feature_names_fruits[pair[0]])
23     axis.set_ylabel(feature_names_fruits[pair[1]])
24     
25 plt.tight_layout()
26 plt.show()
27 
28 clf = RandomForestClassifier(n_estimators = 10,
29                             random_state=0).fit(X_train, y_train)
30 
31 print('Random Forest, Fruit dataset, default settings')
32 print('Accuracy of RF classifier on training set: {:.2f}'
33      .format(clf.score(X_train, y_train)))
34 print('Accuracy of RF classifier on test set: {:.2f}'
35      .format(clf.score(X_test, y_test)))

Random Forest, Fruit dataset, default settings
Accuracy of RF classifier on training set: 1.00
Accuracy of RF classifier on test set: 0.80

Random Forests on a real-world dataset

 

 1 from sklearn.ensemble import RandomForestClassifier
 2 
 3 X_train, X_test, y_train, y_test = train_test_split(X_cancer, y_cancer, random_state = 0)
 4 
 5 clf = RandomForestClassifier(max_features = 8, random_state = 0)
 6 clf.fit(X_train, y_train)
 7 
 8 print('Breast cancer dataset')
 9 print('Accuracy of RF classifier on training set: {:.2f}'
10      .format(clf.score(X_train, y_train)))
11 print('Accuracy of RF classifier on test set: {:.2f}'
12      .format(clf.score(X_test, y_test)))
Breast cancer dataset
Accuracy of RF classifier on training set: 1.00
Accuracy of RF classifier on test set: 0.99

 

Gradient-boosted decision trees

 

 1 from sklearn.ensemble import GradientBoostingClassifier
 2 from sklearn.model_selection import train_test_split
 3 from adspy_shared_utilities import plot_class_regions_for_classifier_subplot
 4 
 5 X_train, X_test, y_train, y_test = train_test_split(X_D2, y_D2, random_state = 0)
 6 fig, subaxes = plt.subplots(1, 1, figsize=(6, 6))
 7 
 8 clf = GradientBoostingClassifier().fit(X_train, y_train)
 9 title = 'GBDT, complex binary dataset, default settings'
10 plot_class_regions_for_classifier_subplot(clf, X_train, y_train, X_test,
11                                          y_test, title, subaxes)
12 
13 plt.show()

Gradient boosted decision trees on the fruit dataset

 1 X_train, X_test, y_train, y_test = train_test_split(X_fruits.as_matrix(),
 2                                                    y_fruits.as_matrix(),
 3                                                    random_state = 0)
 4 fig, subaxes = plt.subplots(6, 1, figsize=(6, 32))
 5 
 6 pair_list = [[0,1], [0,2], [0,3], [1,2], [1,3], [2,3]]
 7 
 8 for pair, axis in zip(pair_list, subaxes):
 9     X = X_train[:, pair]
10     y = y_train
11     
12     clf = GradientBoostingClassifier().fit(X, y)
13     plot_class_regions_for_classifier_subplot(clf, X, y, None,
14                                              None, title, axis,
15                                              target_names_fruits)
16     
17     axis.set_xlabel(feature_names_fruits[pair[0]])
18     axis.set_ylabel(feature_names_fruits[pair[1]])
19     
20 plt.tight_layout()
21 plt.show()
22 clf = GradientBoostingClassifier().fit(X_train, y_train)
23 
24 print('GBDT, Fruit dataset, default settings')
25 print('Accuracy of GBDT classifier on training set: {:.2f}'
26      .format(clf.score(X_train, y_train)))
27 print('Accuracy of GBDT classifier on test set: {:.2f}'
28      .format(clf.score(X_test, y_test)))

GBDT, Fruit dataset, default settings
Accuracy of GBDT classifier on training set: 1.00
Accuracy of GBDT classifier on test set: 0.80

Gradient-boosted decision trees on a real-world dataset

 

 1 from sklearn.ensemble import GradientBoostingClassifier
 2 
 3 X_train, X_test, y_train, y_test = train_test_split(X_cancer, y_cancer, random_state = 0)
 4 
 5 clf = GradientBoostingClassifier(random_state = 0)
 6 clf.fit(X_train, y_train)
 7 
 8 print('Breast cancer dataset (learning_rate=0.1, max_depth=3)')
 9 print('Accuracy of GBDT classifier on training set: {:.2f}'
10      .format(clf.score(X_train, y_train)))
11 print('Accuracy of GBDT classifier on test set: {:.2f}\n'
12      .format(clf.score(X_test, y_test)))
13 
14 clf = GradientBoostingClassifier(learning_rate = 0.01, max_depth = 2, random_state = 0)
15 clf.fit(X_train, y_train)
16 
17 print('Breast cancer dataset (learning_rate=0.01, max_depth=2)')
18 print('Accuracy of GBDT classifier on training set: {:.2f}'
19      .format(clf.score(X_train, y_train)))
20 print('Accuracy of GBDT classifier on test set: {:.2f}'
21      .format(clf.score(X_test, y_test)))
Breast cancer dataset (learning_rate=0.1, max_depth=3)
Accuracy of GBDT classifier on training set: 1.00
Accuracy of GBDT classifier on test set: 0.96

Breast cancer dataset (learning_rate=0.01, max_depth=2)
Accuracy of GBDT classifier on training set: 0.97
Accuracy of GBDT classifier on test set: 0.97
 
神经网络

 几种常见激励函数(能够进行非线性你决策)

 1 xrange = np.linspace(-2, 2, 200)
 2 
 3 plt.figure(figsize=(7,6))
 4 
 5 plt.plot(xrange, np.maximum(xrange, 0), label = 'relu')
 6 plt.plot(xrange, np.tanh(xrange), label = 'tanh')
 7 plt.plot(xrange, 1 / (1 + np.exp(-xrange)), label = 'logistic')
 8 plt.legend()
 9 plt.title('Neural network activation functions')
10 plt.xlabel('Input value (x)')
11 plt.ylabel('Activation function output')
12 
13 plt.show()

神经网络:分类

Synthetic dataset 1: single hidden layer(单一隐含层)

 1 from sklearn.neural_network import MLPClassifier
 2 from adspy_shared_utilities import plot_class_regions_for_classifier_subplot
 3 
 4 X_train, X_test, y_train, y_test = train_test_split(X_D2, y_D2, random_state=0)
 5 
 6 fig, subaxes = plt.subplots(3, 1, figsize=(6,18))
 7 
 8 for units, axis in zip([1, 10, 100], subaxes):
 9     nnclf = MLPClassifier(hidden_layer_sizes = [units], solver='lbfgs',
10                          random_state = 0).fit(X_train, y_train)
11     
12     title = 'Dataset 1: Neural net classifier, 1 layer, {} units'.format(units)
13     
14     plot_class_regions_for_classifier_subplot(nnclf, X_train, y_train,
15                                              X_test, y_test, title, axis)
16     plt.tight_layout()

双隐含层

1 from adspy_shared_utilities import plot_class_regions_for_classifier
2 
3 X_train, X_test, y_train, y_test = train_test_split(X_D2, y_D2, random_state=0)
4 
5 nnclf = MLPClassifier(hidden_layer_sizes = [10, 10], solver='lbfgs',
6                      random_state = 0).fit(X_train, y_train)
7 
8 plot_class_regions_for_classifier(nnclf, X_train, y_train, X_test, y_test,
9                                  'Dataset 1: Neural net classifier, 2 layers, 10/10 units')

Regularization parameter: alpha

 1 X_train, X_test, y_train, y_test = train_test_split(X_D2, y_D2, random_state=0)
 2 
 3 fig, subaxes = plt.subplots(4, 1, figsize=(6, 23))
 4 
 5 for this_alpha, axis in zip([0.01, 0.1, 1.0, 5.0], subaxes):
 6     nnclf = MLPClassifier(solver='lbfgs', activation = 'tanh',
 7                          alpha = this_alpha,
 8                          hidden_layer_sizes = [100, 100],
 9                          random_state = 0).fit(X_train, y_train)
10     
11     title = 'Dataset 2: NN classifier, alpha = {:.3f} '.format(this_alpha)
12     
13     plot_class_regions_for_classifier_subplot(nnclf, X_train, y_train,
14                                              X_test, y_test, title, axis)
15     plt.tight_layout()
16     

The effect of different choices of activation function

 1 X_train, X_test, y_train, y_test = train_test_split(X_D2, y_D2, random_state=0)
 2 
 3 fig, subaxes = plt.subplots(3, 1, figsize=(6,18))
 4 
 5 for this_activation, axis in zip(['logistic', 'tanh', 'relu'], subaxes):
 6     nnclf = MLPClassifier(solver='lbfgs', activation = this_activation,
 7                          alpha = 0.1, hidden_layer_sizes = [10, 10],
 8                          random_state = 0).fit(X_train, y_train)
 9     
10     title = 'Dataset 2: NN classifier, 2 layers 10/10, {} \
11 activation function'.format(this_activation)
12     
13     plot_class_regions_for_classifier_subplot(nnclf, X_train, y_train,
14                                              X_test, y_test, title, axis)
15     plt.tight_layout()

 

神经网络:回归

 1 from sklearn.neural_network import MLPRegressor
 2 
 3 fig, subaxes = plt.subplots(2, 3, figsize=(11,8), dpi=70)
 4 
 5 X_predict_input = np.linspace(-3, 3, 50).reshape(-1,1)
 6 
 7 X_train, X_test, y_train, y_test = train_test_split(X_R1[0::5], y_R1[0::5], random_state = 0)
 8 
 9 for thisaxisrow, thisactivation in zip(subaxes, ['tanh', 'relu']):
10     for thisalpha, thisaxis in zip([0.0001, 1.0, 100], thisaxisrow):
11         mlpreg = MLPRegressor(hidden_layer_sizes = [100,100],
12                              activation = thisactivation,
13                              alpha = thisalpha,
14                              solver = 'lbfgs').fit(X_train, y_train)
15         y_predict_output = mlpreg.predict(X_predict_input)
16         thisaxis.set_xlim([-2.5, 0.75])
17         thisaxis.plot(X_predict_input, y_predict_output,
18                      '^', markersize = 10)
19         thisaxis.plot(X_train, y_train, 'o')
20         thisaxis.set_xlabel('Input feature')
21         thisaxis.set_ylabel('Target value')
22         thisaxis.set_title('MLP regression\nalpha={}, activation={})'
23                           .format(thisalpha, thisactivation))
24         plt.tight_layout()

Application to real-world dataset for classification

 

 1 from sklearn.neural_network import MLPClassifier
 2 from sklearn.preprocessing import MinMaxScaler
 3 
 4 
 5 scaler = MinMaxScaler()
 6 
 7 X_train, X_test, y_train, y_test = train_test_split(X_cancer, y_cancer, random_state = 0)
 8 X_train_scaled = scaler.fit_transform(X_train)
 9 X_test_scaled = scaler.transform(X_test)
10 
11 clf = MLPClassifier(hidden_layer_sizes = [100, 100], alpha = 5.0,
12                    random_state = 0, solver='lbfgs').fit(X_train_scaled, y_train)
13 
14 print('Breast cancer dataset')
15 print('Accuracy of NN classifier on training set: {:.2f}'
16      .format(clf.score(X_train_scaled, y_train)))
17 print('Accuracy of NN classifier on test set: {:.2f}'
18      .format(clf.score(X_test_scaled, y_test)))
Breast cancer dataset
Accuracy of NN classifier on training set: 0.98
Accuracy of NN classifier on test set: 0.97

 

posted on 2018-03-14 14:44  郑哲  阅读(482)  评论(0编辑  收藏  举报