zhber
有好多做过的题没写下来,如果我还能记得就补吧

John Doe has found the beautiful permutation formula.

Let's take permutation p = p1, p2, ..., pn. Let's define transformation f of this permutation:

where k (k > 1) is an integer, the transformation parameter, r is such maximum integer that rk ≤ n. If rk = n, then elements prk + 1, prk + 2 and so on are omitted. In other words, the described transformation of permutation p cyclically shifts to the left each consecutive block of length k and the last block with the length equal to the remainder after dividing n by k.

John Doe thinks that permutation f(f( ... f(p = [1, 2, ..., n], 2) ... , n - 1), n) is beautiful. Unfortunately, he cannot quickly find the beautiful permutation he's interested in. That's why he asked you to help him.

Your task is to find a beautiful permutation for the given n. For clarifications, see the notes to the third sample.

Input

A single line contains integer n (2 ≤ n ≤ 106).

Output

Print n distinct space-separated integers from 1 to n — a beautiful permutation of size n.

Examples
Input
2
Output
2 1 
Input
3
Output
1 3 2 
Input
4
Output
4 2 3 1 
Note

A note to the third test sample:

  • f([1, 2, 3, 4], 2) = [2, 1, 4, 3]
  • f([2, 1, 4, 3], 3) = [1, 4, 2, 3]
  • f([1, 4, 2, 3], 4) = [4, 2, 3, 1]

 

在每次变换的时候,都是取一个长度是t的区间,然后把区间的第一个元素放末尾

那么只要每次把所有这样长度为t的区间的a[kt+1]放到a[kt+t+1]即可。

比如样例的变换:

1 2 3 4 0 0 0

0 2 1 4 3 0 0

0 0 1 4 2 3 0

0 0 0 4 2 3 1

这样每次元素在数组当中的位置都会往后移一位,但是总长度还是n

 1 #include<cstdio>
 2 #include<iostream>
 3 #include<cstring>
 4 #include<cstdlib>
 5 #include<algorithm>
 6 #include<cmath>
 7 #include<queue>
 8 #include<deque>
 9 #include<set>
10 #include<map>
11 #include<ctime>
12 #define LL long long
13 #define inf 0x7ffffff
14 #define pa pair<int,int>
15 #define mkp(a,b) make_pair(a,b)
16 #define pi 3.1415926535897932384626433832795028841971
17 using namespace std;
18 inline LL read()
19 {
20     LL x=0,f=1;char ch=getchar();
21     while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
22     while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
23     return x*f;
24 }
25 int n;
26 int a[2000010];
27 int main()
28 {
29     while (~scanf("%d",&n))
30     {
31         for (int i=1;i<=n;i++)a[i]=i;
32         for (int k=2;k<=n;k++)
33         {
34             int ed=n+k-1,rp=n/k+(n%k!=0);
35             for (int t=k-1+(rp-1)*k;t>=k-1;t-=k)
36             {
37                 swap(a[ed],a[t]);
38                 ed=t;
39             }
40         }
41         for (int i=n;i<=2*n-1;i++)printf("%d ",a[i]);
42         puts("");
43     }
44 }
cf 287D

 

posted on 2017-08-04 09:43  zhber  阅读(266)  评论(0编辑  收藏  举报