MLP操作:
# 前面是正常的卷积操作 # 这里是mlp conv, 可以看出就是一个1*1的卷积操作(等价于全连接操作) layers { bottom: "conv1" top: "cccp1" name: "cccp1" type: CONVOLUTION blobs_lr: 1 blobs_lr: 2 weight_decay: 1 weight_decay: 0 convolution_param { num_output: 96 kernel_size: 1 stride: 1 weight_filler { type: "gaussian" mean: 0 std: 0.05 } bias_filler { type: "constant" value: 0 } } } # 接着接一个激活函数 layers { bottom: "cccp1" top: "cccp1" name: "relu1" type: RELU } # 在来一个用1*1的卷积完成的全连接操作 layers { bottom: "cccp1" top: "cccp2" name: "cccp2" type: CONVOLUTION blobs_lr: 1 blobs_lr: 2 weight_decay: 1 weight_decay: 0 convolution_param { num_output: 96 kernel_size: 1 stride: 1 weight_filler { type: "gaussian" mean: 0 std: 0.05 } bias_filler { type: "constant" value: 0 } } } # 接对应的激活函数 layers { bottom: "cccp2" top: "cccp2" name: "relu2" type: RELU } # 以上完成了两次非线性映射, 也就是 MLP 操作 layers { bottom: "cccp2" top: "pool0" name: "pool0" type: POOLING pooling_param { pool: MAX kernel_size: 3 stride: 2 } } layers { bottom: "pool0" top: "conv2" name: "conv2" type: CONVOLUTION blobs_lr: 1 blobs_lr: 2 weight_decay: 1 weight_decay: 0 convolution_param { num_output: 256 pad: 2 kernel_size: 5 stride: 1 weight_filler { type: "gaussian" mean: 0 std: 0.05 } bias_filler { type: "constant" value: 0 } } }
也是解决overfitting的一种方法