资源链接:链接: https://pan.baidu.com/s/1c1MIm1E 密码: gant

chapter2 : linear regression with one feature

 

************************************************************************************************************

************************************************************************************************************

chapter4:linear regression with multiple feature

  • 在我们面对多维特征问题的时候,我们要保证这些特征都具有相近的尺度,这将帮助梯度下降算法更快地收敛

   

 

  • 如果学习率 α 过小,则达到收敛所需的迭代次数会非常高;如果学习率 α 过大,每次迭代可能不会减小代价函数,可能会越过局部最小值导致无法收敛。

        

************************************************************************************************************

************************************************************************************************************

chapter 5 : Octave

  • 参考文献 
  • plot 
    x=[0:0.01:1];
    y1=sin(2*pi*x);
    plot(x,y1);
    y2=cos(2*pi*x);
    hold on;
    plot(x,y2);
    xlabel('time');
    ylabel('value');
    title('my plot');
    legend('sin','cos');
    print -dpng 'my.png';
    close;
    figure(1);plot(x,y1);
    figure(2);plot(x,y2);
    figure(3);
    subplot(1,2,1);
    plot(x,y1);
    subplot(1,2,2);
    plot(x,y2);
    axis([0.5 1 -1 1]); %change the axis of x and y
    clf;
    a=magic(5)
    imagesc(a);
    imagesc(a), colorbar,colormap gray;
    View Code

 

*************************************************************************************************************

*************************************************************************************************************

 

chapter 6 : logistic regression and regularization

 

************************************************************************************************************

************************************************************************************************************

chapter 7 : regularization

************************************************************************************************************

************************************************************************************************************

chapter 8 : neural network

  • cost function

        

  • forward propagation

      

  • backward propagation

                

  • 数学证明
  • numerical estimation of gradient
  • random initialization and the step of training a neural network

********************************************************************************************************

********************************************************************************************************

chapter 10 : Deciding what to try next

  • evaluating a hypothesis with cross validation
  •  Diagnosing bias and variance

  • learning curves and decide what to do next
  • 高手学习笔记

 

**********************************************************************************************************

**********************************************************************************************************

chapter 11 : precision and recall 

  • skewed data vs precision and recall

*********************************************************************************************************

*********************************************************************************************************

chapter 12 : SVM 

  • for enlagering the projection of X, then we get large margin 
  • kernel and  do perform feature scalling before using the Gaussian kernel
  • Kernel need to satisfy technical condition called "Mercer's Theorem"  to make sure SVM packages' optimizations run correctly, and do not diverge.

  • Polynomial kernel: (XTL+constant)degree

  • SVM  has a convex optimization problem

  •  大牛学习博客

*********************************************************************************************************

*********************************************************************************************************

chapter 13 : Unsupervised learning and clustering

*********************************************************************************************************

*********************************************************************************************************

chapter 14 : PCA

  •   first perform mean normalization and feature scalling so that the feature should have zero mean and comparabel ranges of values.
  • Data preprocessing
  • PCA and SVD , the implementation of PCA , the choosing of K

  • getting the PCA parameter only on the training set and use them on the test and cross validation set

chapter 15 :

posted on 2017-09-04 14:41  中子星  阅读(1029)  评论(0编辑  收藏  举报