一杯清酒邀明月
天下本无事,庸人扰之而烦耳。

查看Eigen版本 

$ head -n 20 /usr/include/eigen3/Eigen/src/Core/util/Macros.h
1 #define EIGEN_WORLD_VERSION 3
2 #define EIGEN_MAJOR_VERSION 2
3 #define EIGEN_MINOR_VERSION 92

版本就是3.2.92


搞清旋转关系

 eigen_test.cc: 

 1 #include <cmath>
 2 #include <iostream>
 3 #include <Eigen/Eigen>
 4  
 5 // wrap the angle within [-PI, PI)
 6 double WrapToPI(double ang_in_rad) {
 7   int c = ang_in_rad / (2.0 * M_PI);
 8   ang_in_rad -= c * (2.0 * M_PI);
 9   if (ang_in_rad < -M_PI) {
10     ang_in_rad += 2.0 * M_PI;
11   }
12   if (ang_in_rad >= M_PI) {
13     ang_in_rad -= 2.0 * M_PI;
14   }
15   return ang_in_rad;
16 }
17  
18 int main(int argc, char *argv[]) {
19   double roll = 30;
20   double pitch = 45;
21   double yaw = 90;
22   std::cout << "\n指定欧拉角(roll pitch yaw): " << roll << " " << pitch << " " << yaw << std::endl;
23  
24   Eigen::Vector3d p1(0, 1, 0); // 点p在o1参考系下的坐标为(0, 1, 0)
25   std::cout << "\n点p在o1参考系下的坐标p1: " << p1.transpose() << std::endl;
26  
27   Eigen::AngleAxisd v_21(yaw * M_PI / 180, Eigen::Vector3d::UnitZ()); // o1参考系绕其z轴(转yaw)顺时针旋转90度得到o2参考系
28   Eigen::Matrix3d R_21 = v_21.matrix();
29   Eigen::Vector3d p2 = R_21 * p1; // 点p在o2参考系下的坐标为(-1, 0, 0)
30   std::cout << "\n点p在o2参考系下的坐标p2: " << p2.transpose() << std::endl;
31  
32   Eigen::AngleAxisd v_32(pitch * M_PI / 180, Eigen::Vector3d::UnitY()); // o2参考系绕其y轴(pitch)顺时针旋转45度得到o3参考系
33   Eigen::Matrix3d R_32 = v_32.matrix();
34   Eigen::Vector3d p3 = R_32 * p2; // 点p在o3参考系下的坐标为(-0.707, 0, 0.707)
35   std::cout << "\n点p在o3参考系下的坐标p3: " << p3.transpose() << std::endl;
36  
37   Eigen::AngleAxisd v_43(roll * M_PI / 180, Eigen::Vector3d::UnitX()); // o3参考系绕其x轴(roll)顺时针旋转30度得到o4参考系
38   Eigen::Matrix3d R_43 = v_43.matrix();
39   Eigen::Vector3d p4 = R_43 * p3; // 点p在o4参考系下的坐标为(-0.707, -0.35, 0.61)
40   std::cout << "\n点p在o4参考系下的坐标p4: " << p4.transpose() << std::endl;
41  
42   Eigen::Matrix3d R_41 = R_43 * R_32 * R_21; // 先绕z轴顺时针旋转90度,再绕y轴顺时针旋转45度,最后绕x轴顺时针旋转30度
43   // Eigen::Matrix3d R_41 = v_43 * v_32 * v_21;
44   p4 = R_41 * p1; // 点p在o4参考系下的坐标为(-0.707, -0.353, 0.612)
45   std::cout << "\n点p在o4参考系下的坐标p4: " << p4.transpose() << std::endl;
46  
47   // 旋转矩阵->欧拉角
48   Eigen::Vector3d euler_angles = R_41.eulerAngles(0, 1, 2); // (0,1,2) 表示分别绕XYZ轴顺序(与上面旋转顺序相反),即按roll,pitch,yaw顺序,顺时针为正
49   // Euler's angles are not unique.
50   // eigen has two sets of euler angles: (a, b, c) or (pi+a, pi-b, pi+c)
51   // In your XYZ convention, both (0, pi, pi) and (pi, 0, 0) represents the same rotation, and both are correct.
52   // The Eigen::eulerAngles method consistently chooses to minimize first angles.
53   if (std::fabs(euler_angles(1)) > M_PI / 2) {
54     euler_angles(0) = WrapToPI(M_PI + euler_angles(0));
55     euler_angles(1) = WrapToPI(M_PI - euler_angles(1));
56     euler_angles(2) = WrapToPI(M_PI + euler_angles(2));
57   }
58   std::cout << "\n旋转矩阵->欧拉角(roll pitch yaw): " << euler_angles.transpose() * 180 / M_PI << std::endl; // 30 45 90
59  
60   return 0;
61 }

输出:


不同旋转表示及相互转换

eigen_test.cc:  

 1 #include <cmath>
 2 #include <iostream>
 3 #include <Eigen/Eigen>
 4  
 5 int main(int argc, char *argv[]) {
 6   // 单位四元素
 7   Eigen::Quaterniond q = Eigen::Quaterniond(1, 0, 0, 0); // (w,x,y,z)
 8   // Eigen::Quaterniond q(1, 0, 0, 0); // (w,x,y,z)
 9   // Eigen::Quaterniond q(Eigen::Vector4d(0, 0, 0, 1)); // (x,y,z,w)
10   std::cout << "\n单位四元素:\n" << q.coeffs() << std::endl; // (x,y,z,w)
11  
12   // 单位旋转矩阵
13   Eigen::Matrix3d rotation_matrix3d = Eigen::Matrix3d::Identity();
14   std::cout << "\n单位旋转矩阵:\n" << rotation_matrix3d << std::endl;
15  
16   // 旋转向量(轴角)
17   Eigen::AngleAxisd angle_axis(M_PI / 4, Eigen::Vector3d(0, 0, 1)); // 绕z轴顺时针旋转45°(yaw)
18   std::cout << "\n旋转向量:\naxi: " << angle_axis.axis().transpose() << ", angle: " << angle_axis.angle() * 180 / M_PI << std::endl;
19  
20   // 欧拉角
21   Eigen::Vector3d euler_angles(0, 0, 45); // roll pitch yaw(自定义)
22   std::cout << "\n欧拉角:\n(roll pitch yaw) = " << euler_angles.transpose() << std::endl;
23  
24   // 旋转向量->旋转矩阵
25   rotation_matrix3d = angle_axis.matrix();
26   // rotation_matrix3d = angle_axis.toRotationMatrix();
27   std::cout << "\n旋转向量->旋转矩阵:\n" << rotation_matrix3d << std::endl;
28  
29   // 旋转矩阵->旋转向量(轴角)
30   angle_axis.fromRotationMatrix(rotation_matrix3d);
31   // angle_axis = rotation_matrix3d;
32   std::cout << "\n旋转矩阵->旋转向量(轴角):\naxi: " << angle_axis.axis().transpose() << ", angle: " << angle_axis.angle() * 180 / M_PI << std::endl;
33  
34   // 旋转向量(轴角)->四元素
35   q = Eigen::Quaterniond(angle_axis);
36   std::cout << "\n旋转向量(轴角)->四元素:\n(w x y z) = " << q.w() << " " << q.x() << " " << q.y() << " " << q.z() << std::endl;
37  
38   // 四元素->旋转向量(轴角)
39   angle_axis = q;
40   std::cout << "\n四元素->旋转向量(轴角):\naxi: " << angle_axis.axis().transpose() << ", angle: " << angle_axis.angle() * 180 / M_PI << std::endl;
41  
42   // 旋转矩阵->四元素
43   q = Eigen::Quaterniond(rotation_matrix3d);
44   // q = rotation_matrix3d;
45   std::cout << "\n旋转矩阵->四元素:\n(w x y z) = " << q.w() << " " << q.x() << " " << q.y() << " " << q.z() << std::endl;
46  
47   // 四元素->旋转矩阵
48   rotation_matrix3d = q.matrix();
49   // rotation_matrix3d = q.toRotationMatrix();
50   std::cout << "\n四元素->旋转矩阵:\n" << rotation_matrix3d << std::endl;
51  
52   // 旋转矩阵->欧拉角
53   euler_angles = rotation_matrix3d.eulerAngles(0, 1, 2);
54   std::cout << "\n旋转矩阵->欧拉角:\n(roll pitch yaw) = " << euler_angles.transpose() * 180 / M_PI << std::endl;
55  
56   return 0;
57 }

输出: 


基础用法

eigen_test.cc:  

 1 #include <cmath>
 2 #include <iostream>
 3 #include <Eigen/Eigen>
 4  
 5 int main(int argc, char *argv[]) {
 6   // 向量(列向量)
 7   Eigen::Vector3d v1(0, 0, 0); // 声明并定义
 8   v1.y() = 1;
 9   v1[2] = 2;
10   std::cout << "v1: " << v1.transpose() << std::endl;
11  
12   Eigen::Vector3d v2;
13   v2 << 2, 2, 2; // 先声明后定义
14   std::cout << "v2: " << v2.transpose() << std::endl;
15  
16   Eigen::Vector3d t;
17   t.setZero(); // 各分量设为0
18   // t = Eigen::Vector3d::Zero();
19   std::cout << "t: " << t.transpose() << std::endl;
20   t.setOnes(); // 各分量设为1
21   // t = Eigen::Vector3d::Ones();
22   std::cout << "t: " << t.transpose() << std::endl;
23  
24   // 矩阵
25   Eigen::Matrix<double,3,4> M;
26   M << 1,0,0,1,
27        0,2,0,1,
28        0,0,1,1;
29   M(1,1) = 1;
30   std::cout << "M:\n" << M << std::endl;
31  
32   Eigen::Matrix3d R = Eigen::Matrix3d::Identity();
33   std::cout << "R:\n" << R << std::endl;
34  
35   // 变换矩阵(4x4)
36   Eigen::Matrix4d T;
37   T << R, t, 0, 0, 0, 1;
38   std::cout << "T:\n" << T << std::endl;
39  
40   // 数学运算
41   v2 = R.inverse()*v2 - t;
42   std::cout << "v2: " << v2.transpose() << std::endl;
43   std::cout << "v2模长: " << v2.norm() << std::endl;
44   std::cout << "v2单位向量: " << v2.normalized().transpose() << std::endl;
45   std::cout << "v1点乘v2: " << v1.dot(v2) << std::endl;
46   std::cout << "v1叉乘v2: " << v1.cross(v2).transpose() << std::endl; // 叉乘只能用于长度为3的向量
47  
48   // 块操作
49   R = T.block<3, 3>(0, 0);
50   t = T.block<3, 1>(0, 3);
51   std::cout << "旋转R:\n" << T.topLeftCorner(3, 3) << std::endl;
52   std::cout << "平移t: " << T.topRightCorner(3, 1).transpose() << std::endl;
53  
54   // 欧式变换矩阵(Isometry)
55   Eigen::Isometry3d T1 = Eigen::Isometry3d::Identity(); // 虽然称为3d,实质上是4x4的矩阵(旋转R+平移t)
56  
57   // 旋转部分赋值
58   // T1.linear() = Eigen::Matrix3d::Identity();
59   // T1.linear() << 1, 0, 0, 0, 1, 0, 0, 0, 1;
60   // T1.rotate(Eigen::Matrix3d::Identity());
61   T1.rotate(Eigen::AngleAxisd(M_PI/4, Eigen::Vector3d(0,0,1)));
62  
63   // 平移部分赋值
64   // T1.pretranslate(Eigen::Vector3d(1, 1, 1));
65   T1.translation() = Eigen::Vector3d(1, 1, 1);
66  
67   std::cout << "T1:\n" << T1.matrix() << std::endl; // 输出4x4变换矩阵
68   std::cout << "R1:\n" << T1.linear().matrix() << std::endl; // 输出旋转部分
69   std::cout << "t1:\n" << T1.translation().transpose() << std::endl; // 输出平移部分
70     
71   Eigen::Quaterniond q(T1.linear());
72   std::cout << "q: " << q.w() << " " << q.x() << " " << q.y() << " " << q.z() << std::endl;
73  
74   Eigen::Isometry3d T2(q);
75   T2(0,3) = 1;
76   T2(1,3) = 2;
77   T2(2,3) = 3;
78   std::cout << "T2:\n" << T2.matrix() << std::endl;
79  
80   Eigen::Vector3d v3(1,1,0);
81   v3 = T1 * v3; // 相当于R1*v1+t1,隐含齐次坐标(1,1,0,1)
82   std::cout << "v3: " << v3.transpose() << std::endl;
83  
84   // 仿射变换矩阵(Affine3d)
85   Eigen::Translation3d t;
86   Eigen::Quaterniond q;
87   Eigen::Affine3d T = t * q;
88  
89   return 0;
90 }

输出:

 1 Eigen::MatrixXd B = Eigen::MatrixXd::Identity(6, 5);
 2 Eigen::VectorXd b(5);
 3 b << 1, 4, 6, -2, 0.4;
 4 Eigen::VectorXd Bb = B * b;
 5 std::cout << "The multiplication of B * b is " << std::endl << Bb << std::endl;
 6  
 7 Eigen::MatrixXd A(3, 2);
 8 A << 1, 2,
 9 2, 3,
10 3, 4;
11 Eigen::MatrixXd B = A.transpose();// the transpose of A is a 2x3 matrix
12 Eigen::MatrixXd C = (B * A).inverse();// computer the inverse of BA, which is a 2x2 matrix
13  
14 Eigen::MatrixXd A = Eigen::MatrixXd::Random(7, 9);
15 Eigen::MatrixXd A = Eigen::MatrixXd::Random(7, 9);
16 std::cout << "The element at fourth row and 7the column is " << A(3, 6) << std::endl;
17 Eigen::MatrixXd B = A.block(1, 2, 3, 3);
18 std::cout << "Take sub-matrix whose upper left corner is A(1, 2)" << std::endl << B << std::endl;
19 Eigen::VectorXd a = A.col(1); // take the second column of A
20 Eigen::VectorXd b = B.row(0); // take the first row of B
21 Eigen::VectorXd c = a.head(3);// take the first three elements of a
22 Eigen::VectorXd d = b.tail(2);// take the last two elements of b
23  
24 Eigen::Quaterniond q1(2, 0, 1, -3); 
25 q1.normalize();
26 std::cout << "To represent rotation, we need to normalize it such that its length is " << q1.norm() << std::endl;
27  
28 Eigen::Vector3d v(1, 2, -1);
29 Eigen::Quaterniond q2;
30 q2.w() = 0;
31 q2.vec() = v;
32 Eigen::Quaterniond q = q1 * q2 * q1.inverse(); 
33  
34 Eigen::Quaterniond a = Eigen::Quterniond::Identity();

Eigen旋转内插值

eigen_test.cc:

 1 #include <cmath>
 2 #include <iostream>
 3 #include <Eigen/Eigen>
 4  
 5 int main() {
 6   Eigen::AngleAxisd angle_axis1(M_PI / 6, Eigen::Vector3d(0, 0, 1)); // 沿z轴(yaw)顺时针旋转30°
 7   Eigen::Quaterniond q1 = Eigen::Quaterniond(angle_axis1);
 8   Eigen::Vector3d t1(3, 3, 3);
 9   Eigen::AngleAxisd angle_axis2(M_PI / 2, Eigen::Vector3d(0, 0, 1)); // 沿z轴(yaw)顺时针旋转90°
10   Eigen::Quaterniond q2 = Eigen::Quaterniond(angle_axis2);
11   Eigen::Vector3d t2(9, 9, 9);
12   double ratio = 1.0 / 3;
13  
14   auto q = q1.slerp(ratio, q2);
15   q.normalize();
16   const auto &t = (1 - ratio) * t1 + ratio * t2;
17   Eigen::Matrix4d T = Eigen::Matrix4d::Identity();
18   // Eigen::Matrix4d T{Eigen::Matrix4d::Identity()};
19   T.block<3, 3>(0, 0) = q.toRotationMatrix();
20   T.block<3, 1>(0, 3) = t;
21  
22   Eigen::Vector3d euler_angles = q.toRotationMatrix().eulerAngles(2, 1, 0);
23   std::cout << "yaw pitch roll: " << euler_angles.transpose() * 180 / M_PI << std::endl;
24   std::cout << "t: " << t.transpose() << std::endl;
25  
26   return 0;
27 }

输出:


解线性方程组

Eigen提供了解线性方程的计算方法,包括LU分解法,QR分解法,SVD(奇异值分解)、特征值分解等。对于一般形如Ax=b的线性系统,解方程的方式一般是将矩阵A进行分解,当然最基本的方法是高斯消元法。

Eigen内置的解线性方程组的算法如下表所示: 

  eigen_test.cc:  

 1 #include <iostream>
 2 #include <Eigen/Dense>
 3 #include "Eigen/Core"
 4 #include "Eigen/Eigenvalues"
 5  
 6 using namespace std;
 7 using namespace Eigen;
 8  
 9 int main() {
10     // Basic linear solving
11     Matrix3f A;
12     Vector3f b;
13     A << 1,2,3,  4,5,6,  7,8,10;
14     b << 3, 3, 4;
15     cout << "Here is the matrix A:\n" << A << endl;
16     cout << "Here is the vector b:\n" << b << endl;
17     Vector3f x = A.colPivHouseholderQr().solve(b);
18     cout << "The solution is:\n" << x << endl;
19  
20     Matrix2f A, b;
21     LLT<Matrix2f> llt;
22     A << 2, -1, -1, 3;
23     b << 1, 2, 3, 1;
24     cout << "Here is the matrix A:\n" << A << endl;
25     cout << "Here is the right hand side b:\n" << b << endl;
26     cout << "Computing LLT decomposition..." << endl;
27     llt.compute(A);
28     cout << "The solution is:\n" << llt.solve(b) << endl;
29     A(1,1)++;
30     cout << "The matrix A is now:\n" << A << endl;
31     cout << "Computing LLT decomposition..." << endl;
32     llt.compute(A);
33     cout << "The solution is now:\n" << llt.solve(b) << endl;
34  
35     Matrix2f A, b;
36     A << 2, -1, -1, 3;
37     b << 1, 2, 3, 1;
38     cout << "Here is the matrix A:\n" << A << endl;
39     cout << "Here is the right hand side b:\n" << b << endl;
40     Matrix2f x = A.ldlt().solve(b);
41     cout << "The solution is:\n" << x << endl;
42  
43     // 计算矩阵的特征值和特征向量
44     Matrix2f A;
45     A << 1, 2, 2, 3;
46     cout << "Here is the matrix A:\n" << A << endl;
47     SelfAdjointEigenSolver<Matrix2f> eigensolver(A);
48     if (eigensolver.info() != Success) abort();
49     cout << "The eigenvalues of A are:\n" << eigensolver.eigenvalues() << endl;
50     cout << "Here's a matrix whose columns are eigenvectors of A \n"
51          << "corresponding to these eigenvalues:\n"
52          << eigensolver.eigenvectors() << endl;
53  
54     // 计算矩阵的逆和行列式
55     Matrix3f A;
56     A << 1, 2, 1,
57          2, 1, 0,
58          -1, 1, 2;
59     cout << "Here is the matrix A:\n" << A << endl;
60     cout << "The determinant of A is " << A.determinant() << endl;
61     cout << "The inverse of A is:\n" << A.inverse() << endl;
62  
63     // BDCSVD解最小二乘(推荐)
64     MatrixXf A = MatrixXf::Random(3, 2);
65     cout << "Here is the matrix A:\n" << A << endl;
66     VectorXf b = VectorXf::Random(3);
67     cout << "Here is the right hand side b:\n" << b << endl;
68     cout << "The least-squares solution is:\n"
69          << A.bdcSvd(ComputeThinU | ComputeThinV).solve(b) << endl;
70  
71     // JacobiSVD解最小二乘
72     Eigen::Matrix3f H;
73     Eigen::JacobiSVD<Eigen::Matrix3f> svd(H, Eigen::ComputeFullU | 
74     Eigen::ComputeFullV);
75     Eigen::Matrix3f U = svd.matrixU();
76     Eigen::Matrix3f V = svd.matrixV();
77  
78     // AX = 0
79     // (AX)`(AX)
80     // X`(A`A)X
81     // 求特征值和特征向量
82     Eigen::SelfAdjointEigenSolver<Eigen::Matrix3d> self_adjoint_solver;
83     self_adjoint_solver.compute(ATA);
84     Eigen::Matrix3d eigen_values = self_adjoint_solver.eigenvalues().asDiagonal(); // The eigenvalues are sorted in increasing order.
85     Eigen::Matrix3d eigen_vectors = self_adjoint_solver.eigenvectors();
86     Eigen::Vector3d eigen_vector = eigen_vectors.col(0);
87     eigen_values(0, 0) = 0;
88     ATA = eigen_vectors * eigen_values * eigen_vectors.inverse();
89  
90     Eigen::EigenSolver<Eigen::Matrix4d> general_solver;
91     general_solver.compute(ATA);
92     cout << "eigenvalues:\n" << general_solver.eigenvalues();
93     cout << "eigenvectors:\n" << general_solver.eigenvectors();
94     //wxyz = general_solver.eigenvectors().col(0);
95  
96     return 0;
97 }

CMakeLists.txt

 1 cmake_minimum_required(VERSION 2.8.3)
 2 project(test)
 3  
 4 set(CMAKE_CXX_STANDARD 11)
 5 set(EXECUTABLE_OUTPUT_PATH ${PROJECT_SOURCE_DIR}/bin)
 6  
 7 find_package(Eigen3)
 8 INCLUDE_DIRECTORIES(${EIGEN3_INCLUDE_DIR})
 9  
10 add_executable(eigen_test eigen_test.cc)
11 target_link_libraries(eigen_test ${Eigen_LIBS})

强制类型转换

1 Eigen::Matrix4f v1;
2 const Eigen::Matrix4d v2 = v1.cast<double>();
3  
4 Eigen::Matrix4d v1;
5 Eigen::Matrix4f v2 = v1.template cast<float>();

 Eigen::Matrix和cv::Mat相互转换

1 Eigen::Matrix3d eigen_R;
2 cv::Mat cv_R;
3 cv::cv2eigen(cv_R, eigen_R);
4 cv::eigen2cv(eigen_R, cv_R);

Eigen的SSE兼容,内存分配,和std容器的兼容理解

SSE支持128bit的多指令并行,但是有个要求是处理的对象必须要在内存地址以16byte整数倍的地方开始。不过这些细节Eigen在做并行化的时候会自己处理。但是,如果把一些Eigen的结构放到std的容器里面,比如vector,map。这些容器会把一个一个的Eigen结构在内存里面连续排放。

Eigen提供了两种方法来解决:

1、使用特别的内存分配对象。

std::map<int, Eigen::Vector4f, std::less<int>, Eigen::aligned_allocator<std::pair<const int, Eigen::Vector4f> > >

std::vector<Eigen::Affine3d, Eigen::aligned_allocator<Eigen::Affine3d>>

2、在对象定义的时候,使用特殊的宏,注意必须在所有Eigen对象出现前使用这个宏。

EIGEN_DEFINE_STL_VECTOR_SPECIALIZATION

有这个问题的Eigen结构包括:

 1 Eigen::Vector2d
 2 Eigen::Vector4d
 3 Eigen::Vector4f
 4 Eigen::Matrix2d
 5 Eigen::Matrix2f
 6 Eigen::Matrix4d
 7 Eigen::Matrix4f
 8 Eigen::Affine3d
 9 Eigen::Affine3f
10 Eigen::Quaterniond
11 Eigen::Quaternionf

另外如果上面提到的这些结构作为一个对象的成员,这个时候需要在类定义里面使用另外一个宏

EIGEN_MAKE_ALIGNED_OPERATOR_NEW

Eigen库中的Map类

Map类用于通过C++中普通的连续指针或者数组 (raw C/C++ arrays)来构造Eigen里的Matrix类,这就好比Eigen里的Matrix类的数据和raw C++array 共享了一片地址,也就是引用。

1. 比如有个API只接受普通的C++数组,但又要对普通数组进行线性代数操作,那么用它构造为Map类,直接操作Map就等于操作了原始普通数组,省时省力。

2. 再比如有个庞大的Matrix类,在一个大循环中要不断读取Matrix中的一段连续数据,如果你每次都用block operation 去引用数据,太累(虽然block operation 也是引用类型)。于是就事先将这些数据构造成若干Map,那么以后循环中就直接操作Map就行了。

实际上Map类并没有自己申请一片空内存,只是一个引用,所以需要构造时初始化,或者使用Map的指针。

引申一下,Eigen里 ref 类也是引用类型,Armadillo 里 subview 都是引用类型,

Eigen开发人说的

The use 'sub' as a Matrix or Map. Actually Map, Ref, and Block inherit from the same base class. You can also use Block.

所以说了这么多,就一句话 Map 就是个引用。

posted on 2022-05-25 16:06  一杯清酒邀明月  阅读(1041)  评论(0编辑  收藏  举报