一杯清酒邀明月
天下本无事,庸人扰之而烦耳。

一、光照补偿

1.直方图均衡化

 1 #include "stdafx.h"  
 2 #include<opencv2/opencv.hpp>  
 3 #include<iostream>  
 4 using namespace std;
 5 using namespace cv;
 6  
 7 int main(int argc, char *argv[])
 8 {
 9     Mat image = imread("D://vvoo//123.jpg", 1);
10     if (!image.data)
11     {
12         cout << "image loading error" <<endl;
13         return -1;
14     }
15     Mat imageRGB[3];
16     split(image, imageRGB);
17     for (int i = 0; i < 3; i++)
18     {
19         equalizeHist(imageRGB[i], imageRGB[i]);
20     }
21     merge(imageRGB, 3, image);
22     imshow("equalizeHist", image);
23     waitKey();
24     return 0;
25 }

 2.gamma corection:

 人眼是按照gamma < 1的曲线对输入图像进行处理的。

原图gamma=1.2ga=1.8ga=2.2ga=3.2

 1 #include<opencv2/opencv.hpp>  
 2 #include<iostream>  
 3 using namespace std;
 4 using namespace cv;
 5 // Normalizes a given image into a value range between 0 and 255.  
 6 Mat norm(const Mat& src) {
 7     // Create and return normalized image:  
 8     Mat dst;
 9     switch (src.channels()) {
10     case 1:
11         cv::normalize(src, dst, 0, 255, NORM_MINMAX, CV_8UC1);
12         break;
13     case 3:
14         cv::normalize(src, dst, 0, 255, NORM_MINMAX, CV_8UC3);
15         break;
16     default:
17         src.copyTo(dst);
18         break;
19     }
20     return dst;
21 }
22  
23 int main()
24 {
25     Mat image,X,I;
26  
27     VideoCapture cap(0);
28     while (1)
29     {
30         cap >> image;
31         image.convertTo(X, CV_32FC1); //转换格式
32         float gamma = 4;
33         pow(X, gamma, I);
34         
35         imshow("Original Image", image);
36         imshow("Gamma correction image", norm(I));
37         char key = waitKey(30);
38         if (key=='q' )
39             break;
40     }
41     return 0;
42 }

3.拉普拉斯算子增强

 1 int main(int argc, char *argv[])
 2 {
 3     Mat image = imread("D://vvoo//123.jpg", 1);
 4     if (!image.data)
 5     {
 6         cout << "image loading error" <<endl;
 7         return -1;
 8     }
 9     imshow("原图", image);
10     Mat imageEnhance;
11     Mat kernel = (Mat_<float>(3, 3) << 0, -1, 0, 0, 7, 0, 0, -1, 0);
12     filter2D(image, imageEnhance, CV_8UC3, kernel);
13     imshow("拉普拉斯算子图像增强效果", imageEnhance);
14     imwrite("C://Users//TOPSUN//Desktop//123.jpg",imageEnhance);
15     waitKey();
16     return 0;
17 }

效果不好

 4.对数变换

对数图像增强是图像增强的一种常见方法,其公式为: S = c log(r+1),其中c是常数(以下算法c=255/(log(256)),这样可以实现整个画面的亮度增大此时默认v=e,即 S = c ln(r+1)。

如下图,对数使亮度比较低的像素转换成亮度比较高的,而亮度较高的像素则几乎没有变化,这样就使图片整体变亮。

 1 int main(int argc, char *argv[])
 2 {
 3     double temp = 255 / log(256);
 4     cout << "doubledouble temp ="<< temp<<endl;
 5  
 6     Mat image = imread("D://vvoo//123.jpg", 1);
 7     if (!image.data)
 8     {
 9         cout << "image loading error" <<endl;
10         return -1;
11     }
12     imshow("原图", image);
13     Mat imageLog(image.size(), CV_32FC3);
14     for (int i = 0; i < image.rows; i++)
15     {
16         for (int j = 0; j < image.cols; j++)
17         {
18             imageLog.at<Vec3f>(i, j)[0] = temp* log(1 + image.at<Vec3b>(i, j)[0]);
19             imageLog.at<Vec3f>(i, j)[1] = temp*log(1 + image.at<Vec3b>(i, j)[1]);
20             imageLog.at<Vec3f>(i, j)[2] = temp*log(1 + image.at<Vec3b>(i, j)[2]);
21         }
22     }
23     //归一化到0~255    
24     normalize(imageLog, imageLog, 0, 255, CV_MINMAX); 
25     //转换成8bit图像显示    
26     convertScaleAbs(imageLog, imageLog);
27     int channel = image.channels();
28     cout << channel << endl;
29     imshow("Soure", image);
30     imshow("after", imageLog);
31     imwrite("C://Users//TOPSUN//Desktop//123.jpg", imageLog);
32     waitKey();
33     return 0;
34 }

二、去除光照

5.RGB归一化

据说能消除光照,自己实现出来好垃圾啊

 1 int main(int argc, char *argv[])
 2 {
 3     //double temp = 255 / log(256);
 4     //cout << "doubledouble temp ="<< temp<<endl;
 5     
 6     Mat  image = imread("D://vvoo//sun_face.jpg", 1);
 7     if (!image.data)
 8     {
 9         cout << "image loading error" <<endl;
10         return -1;
11     }
12     imshow("原图", image);
13     Mat src(image.size(), CV_32FC3);
14     for (int i = 0; i < image.rows; i++)
15     {
16         for (int j = 0; j < image.cols; j++)
17         {
18             src.at<Vec3f>(i, j)[0] = 255 * (float)image.at<Vec3b>(i, j)[0] / ((float)image.at<Vec3b>(i, j)[0] + (float)image.at<Vec3b>(i, j)[2] + (float)image.at<Vec3b>(i, j)[1]+0.01);
19             src.at<Vec3f>(i, j)[1] = 255 * (float)image.at<Vec3b>(i, j)[1] / ((float)image.at<Vec3b>(i, j)[0] + (float)image.at<Vec3b>(i, j)[2] + (float)image.at<Vec3b>(i, j)[1]+0.01);
20             src.at<Vec3f>(i, j)[2] = 255 * (float)image.at<Vec3b>(i, j)[2] / ((float)image.at<Vec3b>(i, j)[0] + (float)image.at<Vec3b>(i, j)[2] + (float)image.at<Vec3b>(i, j)[1]+0.01);
21         }
22     }
23     
24     normalize(src, src, 0, 255, CV_MINMAX);
25       
26     convertScaleAbs(src,src);
27     imshow("rgb", src);
28     imwrite("C://Users//TOPSUN//Desktop//123.jpg", src);
29     waitKey(0);
30     return 0;
31 }

 6.另一种去除光照的方法

 1 void unevenLightCompensate(Mat &image, int blockSize)
 2 {
 3     if (image.channels() == 3) cvtColor(image, image, 7);
 4     double average = mean(image)[0];
 5     int rows_new = ceil(double(image.rows) / double(blockSize));
 6     int cols_new = ceil(double(image.cols) / double(blockSize));
 7     Mat blockImage;
 8     blockImage = Mat::zeros(rows_new, cols_new, CV_32FC1);
 9     for (int i = 0; i < rows_new; i++)
10     {
11         for (int j = 0; j < cols_new; j++)
12         {
13             int rowmin = i*blockSize;
14             int rowmax = (i + 1)*blockSize;
15             if (rowmax > image.rows) rowmax = image.rows;
16             int colmin = j*blockSize;
17             int colmax = (j + 1)*blockSize;
18             if (colmax > image.cols) colmax = image.cols;
19             Mat imageROI = image(Range(rowmin, rowmax), Range(colmin, colmax));
20             double temaver = mean(imageROI)[0];
21             blockImage.at<float>(i, j) = temaver;
22         }
23     }
24     blockImage = blockImage - average;
25     Mat blockImage2;
26     resize(blockImage, blockImage2, image.size(), (0, 0), (0, 0), INTER_CUBIC);
27     Mat image2;
28     image.convertTo(image2, CV_32FC1);
29     Mat dst = image2 - blockImage2;
30     dst.convertTo(image, CV_8UC1);
31 }
32 int main(int argc, char *argv[])
33 {
34     //double temp = 255 / log(256);
35     //cout << "doubledouble temp ="<< temp<<endl;
36     
37     Mat  image = imread("C://Users//TOPSUN//Desktop//2.jpg", 1);
38     if (!image.data)
39     {
40         cout << "image loading error" <<endl;
41         return -1;
42     }
43     imshow("原图", image);
44     unevenLightCompensate(image, 12);
45     imshow("rgb", image);
46     imwrite("C://Users//TOPSUN//Desktop//123.jpg", image);
47     waitKey(0);
48     return 0;
49 }

 7.又找到一个

 1 int highlight_remove_Chi(IplImage* src, IplImage* dst)
 2 {
 3     int height = src->height;
 4     int width = src->width;
 5     int step = src->widthStep;
 6     int i = 0, j = 0;
 7     unsigned char R, G, B, MaxC;
 8     double alpha, beta, alpha_r, alpha_g, alpha_b, beta_r, beta_g, beta_b, temp = 0, realbeta = 0, minalpha = 0;
 9     double gama, gama_r, gama_g, gama_b;
10     unsigned char* srcData;
11     unsigned char* dstData;
12     for (i = 0; i<height; i++)
13     {
14         srcData = (unsigned char*)src->imageData + i*step;
15         dstData = (unsigned char*)dst->imageData + i*step;
16         for (j = 0; j<width; j++)
17         {
18             R = srcData[j * 3];
19             G = srcData[j * 3 + 1];
20             B = srcData[j * 3 + 2];
21  
22             alpha_r = (double)R / (double)(R + G + B);
23             alpha_g = (double)G / (double)(R + G + B);
24             alpha_b = (double)B / (double)(R + G + B);
25             alpha = max(max(alpha_r, alpha_g), alpha_b);
26             MaxC = max(max(R, G), B);// compute the maximum of the rgb channels
27             minalpha = min(min(alpha_r, alpha_g), alpha_b);                 beta_r = 1 - (alpha - alpha_r) / (3 * alpha - 1);
28             beta_g = 1 - (alpha - alpha_g) / (3 * alpha - 1);
29             beta_b = 1 - (alpha - alpha_b) / (3 * alpha - 1);
30             beta = max(max(beta_r, beta_g), beta_b);//将beta当做漫反射系数,则有                 // gama is used to approximiate the beta
31             gama_r = (alpha_r - minalpha) / (1 - 3 * minalpha);
32             gama_g = (alpha_g - minalpha) / (1 - 3 * minalpha);
33             gama_b = (alpha_b - minalpha) / (1 - 3 * minalpha);
34             gama = max(max(gama_r, gama_g), gama_b);
35  
36             temp = (gama*(R + G + B) - MaxC) / (3 * gama - 1);
37             //beta=(alpha-minalpha)/(1-3*minalpha)+0.08;
38             //temp=(gama*(R+G+B)-MaxC)/(3*gama-1);
39             dstData[j * 3] = R - (unsigned char)(temp + 0.5);
40             dstData[j * 3 + 1] = G - (unsigned char)(temp + 0.5);
41             dstData[j * 3 + 2] = B - (unsigned char)(temp + 0.5);
42         }
43     }
44     cvShowImage("src", src);
45     cvShowImage("dst", dst);
46     
47     return 1;
48 }
49  
50 void main()
51 {
52     IplImage *src = cvLoadImage("C://Users//TOPSUN//Desktop//2.jpg");
53     IplImage *dst = cvCreateImage(cvSize(src->width, src->height), src->depth, 3);
54     if (!src)
55     {
56         printf("请确保图像输入正确;");
57         return;
58     }
59     highlight_remove_Chi(src, dst);
60     cvSaveImage("C://Users//TOPSUN//Desktop//123.jpg", dst);
61     cvWaitKey(0);
62 }

 

posted on 2021-12-16 16:53  一杯清酒邀明月  阅读(1631)  评论(0编辑  收藏  举报