一杯清酒邀明月
天下本无事,庸人扰之而烦耳。

最小二乘法拟合直线

概念:最小二乘法多项式直线拟合,根据给定的点,求出它的函数y=f(x),当然求得准确的函数是不太可能的,但是我们能求出它的近似曲线y=φ(x)

原理
假设有点  , I = 1,2,3,……n,求近似曲线y=φ(x),并且使得y=φ(x)与y=f(x)的平方偏差和最小,偏差

  

 

其中我们要找到一组最好的a b ,“最好的”就是要使选出的a b能使得所有的误差达到最小化。

在此要注意以下,y=ax+b 这里面的未知量是什么,很自然的说法是x y,实际上并不是,我们不用去解这个x和y ,因为x和y已经是给定的值了,当我们在找这条直线的时候,我们实际上并不关心x的值有多好,我们要的就是a 和b这两个变量,它们可以描述x和y之间的关系,我们就是在试图找出那条最适合的直线所对应的a和b。

可以看到最小二乘法对各个变量求偏导,使得偏导值为0,即可得到最小值,因为e是关于a b的函数,导数为0的点必定是最小值,进入正题

 分别对 a b求偏导可以得到:


Halcon最小二乘法拟合直线

 1 首先随机生成一组数据
 2 
 3 Mx:=[100:10:500]
 4 
 5 tuple_length(Mx,len)
 6 
 7 tuple_gen_const(len,5,r)
 8 
 9 Ma:=2
10 
11 Mb:=40
12 
13 tuple_rand(len , noise)
14 
15 My:= Ma *Mx + Mb*noise
16 
17 gen_circle(ContCircle, My, Mx, r)


 

 1 接下来用矩阵进行最小二乘求解
 2 
 3 * y = ax + b
 4 
 5 * y1 = ax1 + b
 6 
 7 * y2 = ax2 + b
 8 
 9 * ... .......
10 
11 * yn = ax + b

 

 1 create_matrix(len,1,My,y)
 2 
 3 create_matrix(len,2,1,x)
 4 
 5 set_value_matrix(x, [0:len-1], gen_tuple_const(len, 0),Mx)
 6 
 7 
 8 * XT 代表X的转置 inv(*)代表*的逆
 9 
10 * x beta = y
11 
12 * xT x beta = xT y
13 
14 * beta = inv( xT x) xT y
15 
16 mult_matrix(x,x,'ATB',xtx)
17 
18 mult_matrix(x,y,'ATB',xty)
19 
20 invert_matrix(xtx,'general', 0, invxtx)
21 
22 mult_matrix(invxtx,xty,'AB', beta)
23 
24 get_full_matrix(beta, Values)
25 
26 Newy:=Values[0] * [10,800] + Values[1]
27 
28 gen_contour_polygon_xld(Contour, Newy, [10,800])

OpenCV最小二乘法拟合直线

 1 #include<iostream>
 2 #include<opencv2\opencv.hpp>
 3 using namespace std;
 4 using namespace cv;
 5  
 6  
 7 int main()
 8 {
 9     vector<Point>points;
10     //(27 39) (8 5) (8 9) (16 22) (44 71) (35 44) (43 57) (19 24) (27 39) (37 52)
11  
12     points.push_back(Point(27, 39));
13     points.push_back(Point(8, 5));
14     points.push_back(Point(8, 9));
15     points.push_back(Point(16, 22));
16     points.push_back(Point(44, 71));
17     points.push_back(Point(35, 44));
18     points.push_back(Point(43, 57));
19     points.push_back(Point(19, 24));
20     points.push_back(Point(27, 39));
21     points.push_back(Point(37, 52));
22     Mat src = Mat::zeros(400, 400, CV_8UC3);
23  
24     for (int i = 0;i < points.size();i++)
25     {
26         //在原图上画出点
27         circle(src, points[i], 3, Scalar(0, 0, 255), 1, 8);
28     }
29     //构建A矩阵 
30     int N = 2;
31     Mat A = Mat::zeros(N, N, CV_64FC1);
32  
33     for (int row = 0;row < A.rows;row++)
34     {
35         for (int col = 0; col < A.cols;col++)
36         {
37             for (int k = 0;k < points.size();k++)
38             {
39                 A.at<double>(row, col) = A.at<double>(row, col) + pow(points[k].x, row + col);
40             }
41         }
42     }
43     //构建B矩阵
44     Mat B = Mat::zeros(N, 1, CV_64FC1);
45     for (int row = 0;row < B.rows;row++)
46     {
47  
48         for (int k = 0;k < points.size();k++)
49         {
50             B.at<double>(row, 0) = B.at<double>(row, 0) + pow(points[k].x, row)*points[k].y;
51         }
52     }
53     //A*X=B
54     Mat X;
55     //cout << A << endl << B << endl;
56     solve(A, B, X,DECOMP_LU);
57     cout << X << endl;
58     vector<Point>lines;
59     for (int x = 0;x < src.size().width;x++)
60     {                // y = b + ax;
61         double y = X.at<double>(0, 0) + X.at<double>(1, 0)*x;
62         printf("(%d,%lf)\n", x, y);
63         lines.push_back(Point(x, y));
64     }
65     polylines(src, lines, false, Scalar(255, 0, 0), 1, 8);
66     imshow("src", src);
67     
68     //imshow("src", A);
69     waitKey(0);
70     return 0;
71 }

C++最小二乘法拟合直线

 1 #include 
 2 #include 
 3 #include
 4  
 5 using namespace std;
 6  
 7 int main(int argc, char *argv[])
 8 {
 9   int num = 0;
10  
11   cout << " Input how many numbers you want to calculate:";
12   cin >> num;
13  
14   valarray data_x(num);
15   valarray data_y(num);
16  
17   while( num )
18   {
19     cout << "Input the "<< num <<" of x:";
20     cin >> data_x[num-1];
21     cout << "Input the "<< num <<" of y:";
22     cin >> data_y[num-1];
23     num--;
24   }
25  
26 double A =0.0;
27 double B =0.0;
28 double C =0.0;
29 double D =0.0;
30  
31 A = (data_x*data_x).sum();
32 B = data_x.sum();
33 C = (data_x*data_y).sum();
34 D = data_y.sum();
35  
36 double k,b,tmp =0;
37 if(tmp=(A*data_x.size()-B*B))
38 {
39   k = (C*data_x.size()-B*D)/tmp;
40   b = (A*D-C*B)/tmp;
41 }
42  
43 else
44 {
45   k=1;
46   b=0;
47 }
48  
49 cout <<"k="< cout <<"b="<</p>
50  
51 return 0;
52 }

 

posted on 2020-12-28 14:11  一杯清酒邀明月  阅读(3341)  评论(0编辑  收藏  举报