一杯清酒邀明月
天下本无事,庸人扰之而烦耳。

    OpenCV常用图像拼接方法将分为四个部分与大家共享,这里是第三种方法,欢迎关注后续。

    OpenCV的常用图像拼接方法(三):基于特征匹配的图像拼接,本次介绍SIFT特征匹配拼接方法,OpenCV版本为4.4.0。特点和适用范围:图像有足够重合相同特征区域,且待拼接图像之间无明显尺度变换和畸变。

优点:适应部分倾斜变化情况。缺点:需要有足够的相同特征区域进行匹配,速度较慢,拼接较大图片容易崩溃。

    如下是待拼接的两张图片:

 

特征匹配图:

 拼接结果图:

 拼接缝处理后(拼接处过渡更自然):

核心代码:

  1 /********************直接图像拼接函数*************************/
  2 bool ImageOverlap0(Mat &img1, Mat &img2)
  3 {
  4   Mat g1(img1, Rect(0, 0, img1.cols, img1.rows));  // init roi 
  5   Mat g2(img2, Rect(0, 0, img2.cols, img2.rows));
  6  
  7   cvtColor(g1, g1, COLOR_BGR2GRAY);
  8   cvtColor(g2, g2, COLOR_BGR2GRAY);
  9  
 10   vector<cv::KeyPoint> keypoints_roi, keypoints_img;  /* keypoints found using SIFT */
 11   Mat descriptor_roi, descriptor_img;                           /* Descriptors for SIFT */
 12   FlannBasedMatcher matcher;                                   /* FLANN based matcher to match keypoints */
 13  
 14   vector<cv::DMatch> matches, good_matches;
 15   cv::Ptr<cv::SIFT> sift = cv::SIFT::create();
 16   int i, dist = 80;
 17  
 18   sift->detectAndCompute(g1, cv::Mat(), keypoints_roi, descriptor_roi);      /* get keypoints of ROI image */
 19   sift->detectAndCompute(g2, cv::Mat(), keypoints_img, descriptor_img);         /* get keypoints of the image */
 20   matcher.match(descriptor_roi, descriptor_img, matches);  //实现描述符之间的匹配
 21  
 22   double max_dist = 0; double min_dist = 5000;
 23   //-- Quick calculation of max and min distances between keypoints 
 24   for (int i = 0; i < descriptor_roi.rows; i++)
 25   {
 26     double dist = matches[i].distance;
 27     if (dist < min_dist) min_dist = dist;
 28     if (dist > max_dist) max_dist = dist;
 29   }
 30   // 特征点筛选
 31   for (i = 0; i < descriptor_roi.rows; i++)
 32   {
 33     if (matches[i].distance < 3 * min_dist)
 34     {
 35       good_matches.push_back(matches[i]);
 36     }
 37   }
 38  
 39   printf("%ld no. of matched keypoints in right image\n", good_matches.size());
 40   /* Draw matched keypoints */
 41  
 42   Mat img_matches;
 43   //绘制匹配
 44   drawMatches(img1, keypoints_roi, img2, keypoints_img,
 45     good_matches, img_matches, Scalar::all(-1),
 46     Scalar::all(-1), vector<char>(),
 47     DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS);
 48   imshow("matches", img_matches);
 49  
 50   vector<Point2f> keypoints1, keypoints2;
 51   for (i = 0; i < good_matches.size(); i++)
 52   {
 53     keypoints1.push_back(keypoints_img[good_matches[i].trainIdx].pt);
 54     keypoints2.push_back(keypoints_roi[good_matches[i].queryIdx].pt);
 55   }
 56   //计算单应矩阵(仿射变换矩阵) 
 57   Mat H = findHomography(keypoints1, keypoints2, RANSAC);
 58   Mat H2 = findHomography(keypoints2, keypoints1, RANSAC);
 59  
 60  
 61   Mat stitchedImage;  //定义仿射变换后的图像(也是拼接结果图像)
 62   Mat stitchedImage2;  //定义仿射变换后的图像(也是拼接结果图像)
 63   int mRows = img2.rows;
 64   if (img1.rows > img2.rows)
 65   {
 66     mRows = img1.rows;
 67   }
 68  
 69   int count = 0;
 70   for (int i = 0; i < keypoints2.size(); i++)
 71   {
 72     if (keypoints2[i].x >= img2.cols / 2)
 73       count++;
 74   }
 75   //判断匹配点位置来决定图片是左还是右
 76   if (count / float(keypoints2.size()) >= 0.5)  //待拼接img2图像在右边
 77   {
 78     cout << "img1 should be left" << endl;
 79     vector<Point2f>corners(4);
 80     vector<Point2f>corners2(4);
 81     corners[0] = Point(0, 0);
 82     corners[1] = Point(0, img2.rows);
 83     corners[2] = Point(img2.cols, img2.rows);
 84     corners[3] = Point(img2.cols, 0);
 85     stitchedImage = Mat::zeros(img2.cols + img1.cols, mRows, CV_8UC3);
 86     warpPerspective(img2, stitchedImage, H, Size(img2.cols + img1.cols, mRows));
 87  
 88     perspectiveTransform(corners, corners2, H);
 89     /*
 90     circle(stitchedImage, corners2[0], 5, Scalar(0, 255, 0), 2, 8);
 91     circle(stitchedImage, corners2[1], 5, Scalar(0, 255, 255), 2, 8);
 92     circle(stitchedImage, corners2[2], 5, Scalar(0, 255, 0), 2, 8);
 93     circle(stitchedImage, corners2[3], 5, Scalar(0, 255, 0), 2, 8); */
 94     cout << corners2[0].x << ", " << corners2[0].y << endl;
 95     cout << corners2[1].x << ", " << corners2[1].y << endl;
 96     imshow("temp", stitchedImage);
 97     //imwrite("temp.jpg", stitchedImage);
 98  
 99     Mat half(stitchedImage, Rect(0, 0, img1.cols, img1.rows));
100     img1.copyTo(half);
101     imshow("result", stitchedImage);
102   }
103   else  //待拼接图像img2在左边
104   {
105     cout << "img2 should be left" << endl;
106     stitchedImage = Mat::zeros(img2.cols + img1.cols, mRows, CV_8UC3);
107     warpPerspective(img1, stitchedImage, H2, Size(img1.cols + img2.cols, mRows));
108     imshow("temp", stitchedImage);
109  
110     //计算仿射变换后的四个端点
111     vector<Point2f>corners(4);
112     vector<Point2f>corners2(4);
113     corners[0] = Point(0, 0);
114     corners[1] = Point(0, img1.rows);
115     corners[2] = Point(img1.cols, img1.rows);
116     corners[3] = Point(img1.cols, 0);
117  
118     perspectiveTransform(corners, corners2, H2);  //仿射变换对应端点
119     /*
120     circle(stitchedImage, corners2[0], 5, Scalar(0, 255, 0), 2, 8);
121     circle(stitchedImage, corners2[1], 5, Scalar(0, 255, 255), 2, 8);
122     circle(stitchedImage, corners2[2], 5, Scalar(0, 255, 0), 2, 8);
123     circle(stitchedImage, corners2[3], 5, Scalar(0, 255, 0), 2, 8); */
124     cout << corners2[0].x << ", " << corners2[0].y << endl;
125     cout << corners2[1].x << ", " << corners2[1].y << endl;
126  
127     Mat half(stitchedImage, Rect(0, 0, img2.cols, img2.rows));
128     img2.copyTo(half);
129     imshow("result", stitchedImage);
130  
131   }
132   imwrite("result.bmp", stitchedImage);
133   return true;
134 }

 

posted on 2020-12-24 09:47  一杯清酒邀明月  阅读(1655)  评论(0编辑  收藏  举报