一杯清酒邀明月
天下本无事,庸人扰之而烦耳。

图像拼接在实际的应用场景很广,比如无人机航拍,遥感图像等等,图像拼接是进一步做图像理解基础步骤,拼接效果的好坏直接影响接下来的工作,所以一个好的图像拼接算法非常重要。

再举一个身边的例子吧,你用你的手机对某一场景拍照,但是你没有办法一次将所有你要拍的景物全部拍下来,所以你对该场景从左往右依次拍了好几张图,来把你要拍的所有景物记录下来。那么我们能不能把这些图像拼接成一个大图呢?我们利用opencv就可以做到图像拼接的效果!

比如我们有对这两张图进行拼接。

从上面两张图可以看出,这两张图有比较多的重叠部分,这也是拼接的基本要求。

那么要实现图像拼接需要那几步呢?简单来说有以下几步:

  1. 对每幅图进行特征点提取
  2. 对对特征点进行匹配
  3. 进行图像配准
  4. 把图像拷贝到另一幅图像的特定位置
  5. 对重叠边界进行特殊处理

好吧,那就开始正式实现图像配准。

第一步就是特征点提取。现在CV领域有很多特征点的定义,比如sift、surf、harris角点、ORB都是很有名的特征因子,都可以用来做图像拼接的工作,他们各有优势。本文将使用ORB和SURF进行图像拼接,用其他方法进行拼接也是类似的。

基于SURF的图像拼接

用SIFT算法来实现图像拼接是很常用的方法,但是因为SIFT计算量很大,所以在速度要求很高的场合下不再适用。所以,它的改进方法SURF因为在速度方面有了明显的提高(速度是SIFT的3倍),所以在图像拼接领域还是大有作为。虽说SURF精确度和稳定性不及SIFT,但是其综合能力还是优越一些。下面将详细介绍拼接的主要步骤。

1.特征点提取和匹配

 1 //提取特征点    
 2 SurfFeatureDetector Detector(2000);  
 3 vector<KeyPoint> keyPoint1, keyPoint2;
 4 Detector.detect(image1, keyPoint1);
 5 Detector.detect(image2, keyPoint2);
 6 
 7 //特征点描述,为下边的特征点匹配做准备    
 8 SurfDescriptorExtractor Descriptor;
 9 Mat imageDesc1, imageDesc2;
10 Descriptor.compute(image1, keyPoint1, imageDesc1);
11 Descriptor.compute(image2, keyPoint2, imageDesc2);
12 
13 FlannBasedMatcher matcher;
14 vector<vector<DMatch> > matchePoints;
15 vector<DMatch> GoodMatchePoints;
16 
17 vector<Mat> train_desc(1, imageDesc1);
18 matcher.add(train_desc);
19 matcher.train();
20 
21 matcher.knnMatch(imageDesc2, matchePoints, 2);
22 cout << "total match points: " << matchePoints.size() << endl;
23 
24 // Lowe's algorithm,获取优秀匹配点
25 for (int i = 0; i < matchePoints.size(); i++)
26 {
27     if (matchePoints[i][0].distance < 0.4 * matchePoints[i][1].distance)
28     {
29         GoodMatchePoints.push_back(matchePoints[i][0]);
30     }
31 }
32 
33 Mat first_match;
34 drawMatches(image02, keyPoint2, image01, keyPoint1, GoodMatchePoints, first_match);
35 imshow("first_match ", first_match);

2.图像配准

这样子我们就可以得到了两幅待拼接图的匹配点集,接下来我们进行图像的配准,即将两张图像转换为同一坐标下,这里我们需要使用findHomography函数来求得变换矩阵。但是需要注意的是,findHomography函数所要用到的点集是Point2f类型的,所有我们需要对我们刚得到的点集GoodMatchePoints再做一次处理,使其转换为Point2f类型的点集。

1 vector<Point2f> imagePoints1, imagePoints2;
2 
3 for (int i = 0; i<GoodMatchePoints.size(); i++)
4 {
5     imagePoints2.push_back(keyPoint2[GoodMatchePoints[i].queryIdx].pt);
6     imagePoints1.push_back(keyPoint1[GoodMatchePoints[i].trainIdx].pt);
7 }

这样子,我们就可以拿着imagePoints1, imagePoints2去求变换矩阵了,并且实现图像配准。值得注意的是findHomography函数的参数中我们选泽了CV_RANSAC,这表明我们选择RANSAC算法继续筛选可靠地匹配点,这使得匹配点解更为精确。

 1 //获取图像1到图像2的投影映射矩阵 尺寸为3*3  
 2 Mat homo = findHomography(imagePoints1, imagePoints2, CV_RANSAC);
 3 ////也可以使用getPerspectiveTransform方法获得透视变换矩阵,不过要求只能有4个点,效果稍差  
 4 //Mat   homo=getPerspectiveTransform(imagePoints1,imagePoints2);  
 5 cout << "变换矩阵为:\n" << homo << endl << endl; //输出映射矩阵     
 6 
 7 //图像配准  
 8 Mat imageTransform1, imageTransform2;
 9 warpPerspective(image01, imageTransform1, homo, Size(MAX(corners.right_top.x, corners.right_bottom.x), image02.rows));
10 //warpPerspective(image01, imageTransform2, adjustMat*homo, Size(image02.cols*1.3, image02.rows*1.8));
11 imshow("直接经过透视矩阵变换", imageTransform1);
12 imwrite("trans1.jpg", imageTransform1);

3. 图像拷贝

拷贝的思路很简单,就是将左图直接拷贝到配准图上就可以了。

 1 //创建拼接后的图,需提前计算图的大小
 2 int dst_width = imageTransform1.cols;  //取最右点的长度为拼接图的长度
 3 int dst_height = image02.rows;
 4 
 5 Mat dst(dst_height, dst_width, CV_8UC3);
 6 dst.setTo(0);
 7 
 8 imageTransform1.copyTo(dst(Rect(0, 0, imageTransform1.cols, imageTransform1.rows)));
 9 image02.copyTo(dst(Rect(0, 0, image02.cols, image02.rows)));
10 
11 imshow("b_dst", dst);

4.图像融合(去裂缝处理)

从上图可以看出,两图的拼接并不自然,原因就在于拼接图的交界处,两图因为光照色泽的原因使得两图交界处的过渡很糟糕,所以需要特定的处理解决这种不自然。这里的处理思路是加权融合,在重叠部分由前一幅图像慢慢过渡到第二幅图像,即将图像的重叠区域的像素值按一定的权值相加合成新的图像。

 1 //优化两图的连接处,使得拼接自然
 2 void OptimizeSeam(Mat& img1, Mat& trans, Mat& dst)
 3 {
 4     int start = MIN(corners.left_top.x, corners.left_bottom.x);//开始位置,即重叠区域的左边界  
 5 
 6     double processWidth = img1.cols - start;//重叠区域的宽度  
 7     int rows = dst.rows;
 8     int cols = img1.cols; //注意,是列数*通道数
 9     double alpha = 1;//img1中像素的权重  
10     for (int i = 0; i < rows; i++)
11     {
12         uchar* p = img1.ptr<uchar>(i);  //获取第i行的首地址
13         uchar* t = trans.ptr<uchar>(i);
14         uchar* d = dst.ptr<uchar>(i);
15         for (int j = start; j < cols; j++)
16         {
17             //如果遇到图像trans中无像素的黑点,则完全拷贝img1中的数据
18             if (t[j * 3] == 0 && t[j * 3 + 1] == 0 && t[j * 3 + 2] == 0)
19             {
20                 alpha = 1;
21             }
22             else
23             {
24                 //img1中像素的权重,与当前处理点距重叠区域左边界的距离成正比,实验证明,这种方法确实好  
25                 alpha = (processWidth - (j - start)) / processWidth;
26             }
27 
28             d[j * 3] = p[j * 3] * alpha + t[j * 3] * (1 - alpha);
29             d[j * 3 + 1] = p[j * 3 + 1] * alpha + t[j * 3 + 1] * (1 - alpha);
30             d[j * 3 + 2] = p[j * 3 + 2] * alpha + t[j * 3 + 2] * (1 - alpha);
31 
32         }
33     }
34 }

多尝试几张,验证拼接效果

测试一

测试二

测试三

最后给出完整的SURF算法实现的拼接代码。

  1 #include "highgui/highgui.hpp"    
  2 #include "opencv2/nonfree/nonfree.hpp"    
  3 #include "opencv2/legacy/legacy.hpp"   
  4 #include <iostream>  
  5 
  6 using namespace cv;
  7 using namespace std;
  8 
  9 void OptimizeSeam(Mat& img1, Mat& trans, Mat& dst);
 10 
 11 typedef struct
 12 {
 13     Point2f left_top;
 14     Point2f left_bottom;
 15     Point2f right_top;
 16     Point2f right_bottom;
 17 }four_corners_t;
 18 
 19 four_corners_t corners;
 20 
 21 void CalcCorners(const Mat& H, const Mat& src)
 22 {
 23     double v2[] = { 0, 0, 1 };//左上角
 24     double v1[3];//变换后的坐标值
 25     Mat V2 = Mat(3, 1, CV_64FC1, v2);  //列向量
 26     Mat V1 = Mat(3, 1, CV_64FC1, v1);  //列向量
 27 
 28     V1 = H * V2;
 29     //左上角(0,0,1)
 30     cout << "V2: " << V2 << endl;
 31     cout << "V1: " << V1 << endl;
 32     corners.left_top.x = v1[0] / v1[2];
 33     corners.left_top.y = v1[1] / v1[2];
 34 
 35     //左下角(0,src.rows,1)
 36     v2[0] = 0;
 37     v2[1] = src.rows;
 38     v2[2] = 1;
 39     V2 = Mat(3, 1, CV_64FC1, v2);  //列向量
 40     V1 = Mat(3, 1, CV_64FC1, v1);  //列向量
 41     V1 = H * V2;
 42     corners.left_bottom.x = v1[0] / v1[2];
 43     corners.left_bottom.y = v1[1] / v1[2];
 44 
 45     //右上角(src.cols,0,1)
 46     v2[0] = src.cols;
 47     v2[1] = 0;
 48     v2[2] = 1;
 49     V2 = Mat(3, 1, CV_64FC1, v2);  //列向量
 50     V1 = Mat(3, 1, CV_64FC1, v1);  //列向量
 51     V1 = H * V2;
 52     corners.right_top.x = v1[0] / v1[2];
 53     corners.right_top.y = v1[1] / v1[2];
 54 
 55     //右下角(src.cols,src.rows,1)
 56     v2[0] = src.cols;
 57     v2[1] = src.rows;
 58     v2[2] = 1;
 59     V2 = Mat(3, 1, CV_64FC1, v2);  //列向量
 60     V1 = Mat(3, 1, CV_64FC1, v1);  //列向量
 61     V1 = H * V2;
 62     corners.right_bottom.x = v1[0] / v1[2];
 63     corners.right_bottom.y = v1[1] / v1[2];
 64 
 65 }
 66 
 67 int main(int argc, char *argv[])
 68 {
 69     Mat image01 = imread("g5.jpg", 1);    //右图
 70     Mat image02 = imread("g4.jpg", 1);    //左图
 71     imshow("p2", image01);
 72     imshow("p1", image02);
 73 
 74     //灰度图转换  
 75     Mat image1, image2;
 76     cvtColor(image01, image1, CV_RGB2GRAY);
 77     cvtColor(image02, image2, CV_RGB2GRAY);
 78 
 79 
 80     //提取特征点    
 81     SurfFeatureDetector Detector(2000);  
 82     vector<KeyPoint> keyPoint1, keyPoint2;
 83     Detector.detect(image1, keyPoint1);
 84     Detector.detect(image2, keyPoint2);
 85 
 86     //特征点描述,为下边的特征点匹配做准备    
 87     SurfDescriptorExtractor Descriptor;
 88     Mat imageDesc1, imageDesc2;
 89     Descriptor.compute(image1, keyPoint1, imageDesc1);
 90     Descriptor.compute(image2, keyPoint2, imageDesc2);
 91 
 92     FlannBasedMatcher matcher;
 93     vector<vector<DMatch> > matchePoints;
 94     vector<DMatch> GoodMatchePoints;
 95 
 96     vector<Mat> train_desc(1, imageDesc1);
 97     matcher.add(train_desc);
 98     matcher.train();
 99 
100     matcher.knnMatch(imageDesc2, matchePoints, 2);
101     cout << "total match points: " << matchePoints.size() << endl;
102 
103     // Lowe's algorithm,获取优秀匹配点
104     for (int i = 0; i < matchePoints.size(); i++)
105     {
106         if (matchePoints[i][0].distance < 0.4 * matchePoints[i][1].distance)
107         {
108             GoodMatchePoints.push_back(matchePoints[i][0]);
109         }
110     }
111 
112     Mat first_match;
113     drawMatches(image02, keyPoint2, image01, keyPoint1, GoodMatchePoints, first_match);
114     imshow("first_match ", first_match);
115 
116     vector<Point2f> imagePoints1, imagePoints2;
117 
118     for (int i = 0; i<GoodMatchePoints.size(); i++)
119     {
120         imagePoints2.push_back(keyPoint2[GoodMatchePoints[i].queryIdx].pt);
121         imagePoints1.push_back(keyPoint1[GoodMatchePoints[i].trainIdx].pt);
122     }
123 
124 
125 
126     //获取图像1到图像2的投影映射矩阵 尺寸为3*3  
127     Mat homo = findHomography(imagePoints1, imagePoints2, CV_RANSAC);
128     ////也可以使用getPerspectiveTransform方法获得透视变换矩阵,不过要求只能有4个点,效果稍差  
129     //Mat   homo=getPerspectiveTransform(imagePoints1,imagePoints2);  
130     cout << "变换矩阵为:\n" << homo << endl << endl; //输出映射矩阵      
131 
132    //计算配准图的四个顶点坐标
133     CalcCorners(homo, image01);
134     cout << "left_top:" << corners.left_top << endl;
135     cout << "left_bottom:" << corners.left_bottom << endl;
136     cout << "right_top:" << corners.right_top << endl;
137     cout << "right_bottom:" << corners.right_bottom << endl;
138 
139     //图像配准  
140     Mat imageTransform1, imageTransform2;
141     warpPerspective(image01, imageTransform1, homo, Size(MAX(corners.right_top.x, corners.right_bottom.x), image02.rows));
142     //warpPerspective(image01, imageTransform2, adjustMat*homo, Size(image02.cols*1.3, image02.rows*1.8));
143     imshow("直接经过透视矩阵变换", imageTransform1);
144     imwrite("trans1.jpg", imageTransform1);
145 
146 
147     //创建拼接后的图,需提前计算图的大小
148     int dst_width = imageTransform1.cols;  //取最右点的长度为拼接图的长度
149     int dst_height = image02.rows;
150 
151     Mat dst(dst_height, dst_width, CV_8UC3);
152     dst.setTo(0);
153 
154     imageTransform1.copyTo(dst(Rect(0, 0, imageTransform1.cols, imageTransform1.rows)));
155     image02.copyTo(dst(Rect(0, 0, image02.cols, image02.rows)));
156 
157     imshow("b_dst", dst);
158 
159 
160     OptimizeSeam(image02, imageTransform1, dst);
161 
162 
163     imshow("dst", dst);
164     imwrite("dst.jpg", dst);
165 
166     waitKey();
167 
168     return 0;
169 }
170 
171 
172 //优化两图的连接处,使得拼接自然
173 void OptimizeSeam(Mat& img1, Mat& trans, Mat& dst)
174 {
175     int start = MIN(corners.left_top.x, corners.left_bottom.x);//开始位置,即重叠区域的左边界  
176 
177     double processWidth = img1.cols - start;//重叠区域的宽度  
178     int rows = dst.rows;
179     int cols = img1.cols; //注意,是列数*通道数
180     double alpha = 1;//img1中像素的权重  
181     for (int i = 0; i < rows; i++)
182     {
183         uchar* p = img1.ptr<uchar>(i);  //获取第i行的首地址
184         uchar* t = trans.ptr<uchar>(i);
185         uchar* d = dst.ptr<uchar>(i);
186         for (int j = start; j < cols; j++)
187         {
188             //如果遇到图像trans中无像素的黑点,则完全拷贝img1中的数据
189             if (t[j * 3] == 0 && t[j * 3 + 1] == 0 && t[j * 3 + 2] == 0)
190             {
191                 alpha = 1;
192             }
193             else
194             {
195                 //img1中像素的权重,与当前处理点距重叠区域左边界的距离成正比,实验证明,这种方法确实好  
196                 alpha = (processWidth - (j - start)) / processWidth;
197             }
198 
199             d[j * 3] = p[j * 3] * alpha + t[j * 3] * (1 - alpha);
200             d[j * 3 + 1] = p[j * 3 + 1] * alpha + t[j * 3 + 1] * (1 - alpha);
201             d[j * 3 + 2] = p[j * 3 + 2] * alpha + t[j * 3 + 2] * (1 - alpha);
202 
203         }
204     }
205 }

基于ORB的图像拼接

利用ORB进行图像拼接的思路跟上面的思路基本一样,只是特征提取和特征点匹配的方式略有差异罢了。这里就不再详细介绍思路了,直接贴代码看效果。

  1 #include "highgui/highgui.hpp"    
  2 #include "opencv2/nonfree/nonfree.hpp"    
  3 #include "opencv2/legacy/legacy.hpp"   
  4 #include <iostream>  
  5 
  6 using namespace cv;
  7 using namespace std;
  8 
  9 void OptimizeSeam(Mat& img1, Mat& trans, Mat& dst);
 10 
 11 typedef struct
 12 {
 13     Point2f left_top;
 14     Point2f left_bottom;
 15     Point2f right_top;
 16     Point2f right_bottom;
 17 }four_corners_t;
 18 
 19 four_corners_t corners;
 20 
 21 void CalcCorners(const Mat& H, const Mat& src)
 22 {
 23     double v2[] = { 0, 0, 1 };//左上角
 24     double v1[3];//变换后的坐标值
 25     Mat V2 = Mat(3, 1, CV_64FC1, v2);  //列向量
 26     Mat V1 = Mat(3, 1, CV_64FC1, v1);  //列向量
 27 
 28     V1 = H * V2;
 29     //左上角(0,0,1)
 30     cout << "V2: " << V2 << endl;
 31     cout << "V1: " << V1 << endl;
 32     corners.left_top.x = v1[0] / v1[2];
 33     corners.left_top.y = v1[1] / v1[2];
 34 
 35     //左下角(0,src.rows,1)
 36     v2[0] = 0;
 37     v2[1] = src.rows;
 38     v2[2] = 1;
 39     V2 = Mat(3, 1, CV_64FC1, v2);  //列向量
 40     V1 = Mat(3, 1, CV_64FC1, v1);  //列向量
 41     V1 = H * V2;
 42     corners.left_bottom.x = v1[0] / v1[2];
 43     corners.left_bottom.y = v1[1] / v1[2];
 44 
 45     //右上角(src.cols,0,1)
 46     v2[0] = src.cols;
 47     v2[1] = 0;
 48     v2[2] = 1;
 49     V2 = Mat(3, 1, CV_64FC1, v2);  //列向量
 50     V1 = Mat(3, 1, CV_64FC1, v1);  //列向量
 51     V1 = H * V2;
 52     corners.right_top.x = v1[0] / v1[2];
 53     corners.right_top.y = v1[1] / v1[2];
 54 
 55     //右下角(src.cols,src.rows,1)
 56     v2[0] = src.cols;
 57     v2[1] = src.rows;
 58     v2[2] = 1;
 59     V2 = Mat(3, 1, CV_64FC1, v2);  //列向量
 60     V1 = Mat(3, 1, CV_64FC1, v1);  //列向量
 61     V1 = H * V2;
 62     corners.right_bottom.x = v1[0] / v1[2];
 63     corners.right_bottom.y = v1[1] / v1[2];
 64 
 65 }
 66 
 67 int main(int argc, char *argv[])
 68 {
 69     Mat image01 = imread("t1.jpg", 1);    //右图
 70     Mat image02 = imread("t2.jpg", 1);    //左图
 71     imshow("p2", image01);
 72     imshow("p1", image02);
 73 
 74     //灰度图转换  
 75     Mat image1, image2;
 76     cvtColor(image01, image1, CV_RGB2GRAY);
 77     cvtColor(image02, image2, CV_RGB2GRAY);
 78 
 79 
 80     //提取特征点    
 81     OrbFeatureDetector  surfDetector(3000);  
 82     vector<KeyPoint> keyPoint1, keyPoint2;
 83     surfDetector.detect(image1, keyPoint1);
 84     surfDetector.detect(image2, keyPoint2);
 85 
 86     //特征点描述,为下边的特征点匹配做准备    
 87     OrbDescriptorExtractor  SurfDescriptor;
 88     Mat imageDesc1, imageDesc2;
 89     SurfDescriptor.compute(image1, keyPoint1, imageDesc1);
 90     SurfDescriptor.compute(image2, keyPoint2, imageDesc2);
 91 
 92     flann::Index flannIndex(imageDesc1, flann::LshIndexParams(12, 20, 2), cvflann::FLANN_DIST_HAMMING);
 93 
 94     vector<DMatch> GoodMatchePoints;
 95 
 96     Mat macthIndex(imageDesc2.rows, 2, CV_32SC1), matchDistance(imageDesc2.rows, 2, CV_32FC1);
 97     flannIndex.knnSearch(imageDesc2, macthIndex, matchDistance, 2, flann::SearchParams());
 98 
 99     // Lowe's algorithm,获取优秀匹配点
100     for (int i = 0; i < matchDistance.rows; i++)
101     {
102         if (matchDistance.at<float>(i, 0) < 0.4 * matchDistance.at<float>(i, 1))
103         {
104             DMatch dmatches(i, macthIndex.at<int>(i, 0), matchDistance.at<float>(i, 0));
105             GoodMatchePoints.push_back(dmatches);
106         }
107     }
108 
109     Mat first_match;
110     drawMatches(image02, keyPoint2, image01, keyPoint1, GoodMatchePoints, first_match);
111     imshow("first_match ", first_match);
112 
113     vector<Point2f> imagePoints1, imagePoints2;
114 
115     for (int i = 0; i<GoodMatchePoints.size(); i++)
116     {
117         imagePoints2.push_back(keyPoint2[GoodMatchePoints[i].queryIdx].pt);
118         imagePoints1.push_back(keyPoint1[GoodMatchePoints[i].trainIdx].pt);
119     }
120 
121 
122 
123     //获取图像1到图像2的投影映射矩阵 尺寸为3*3  
124     Mat homo = findHomography(imagePoints1, imagePoints2, CV_RANSAC);
125     ////也可以使用getPerspectiveTransform方法获得透视变换矩阵,不过要求只能有4个点,效果稍差  
126     //Mat   homo=getPerspectiveTransform(imagePoints1,imagePoints2);  
127     cout << "变换矩阵为:\n" << homo << endl << endl; //输出映射矩阵      
128 
129                                                 //计算配准图的四个顶点坐标
130     CalcCorners(homo, image01);
131     cout << "left_top:" << corners.left_top << endl;
132     cout << "left_bottom:" << corners.left_bottom << endl;
133     cout << "right_top:" << corners.right_top << endl;
134     cout << "right_bottom:" << corners.right_bottom << endl;
135 
136     //图像配准  
137     Mat imageTransform1, imageTransform2;
138     warpPerspective(image01, imageTransform1, homo, Size(MAX(corners.right_top.x, corners.right_bottom.x), image02.rows));
139     //warpPerspective(image01, imageTransform2, adjustMat*homo, Size(image02.cols*1.3, image02.rows*1.8));
140     imshow("直接经过透视矩阵变换", imageTransform1);
141     imwrite("trans1.jpg", imageTransform1);
142 
143 
144     //创建拼接后的图,需提前计算图的大小
145     int dst_width = imageTransform1.cols;  //取最右点的长度为拼接图的长度
146     int dst_height = image02.rows;
147 
148     Mat dst(dst_height, dst_width, CV_8UC3);
149     dst.setTo(0);
150 
151     imageTransform1.copyTo(dst(Rect(0, 0, imageTransform1.cols, imageTransform1.rows)));
152     image02.copyTo(dst(Rect(0, 0, image02.cols, image02.rows)));
153 
154     imshow("b_dst", dst);
155 
156 
157     OptimizeSeam(image02, imageTransform1, dst);
158 
159 
160     imshow("dst", dst);
161     imwrite("dst.jpg", dst);
162 
163     waitKey();
164 
165     return 0;
166 }
167 
168 
169 //优化两图的连接处,使得拼接自然
170 void OptimizeSeam(Mat& img1, Mat& trans, Mat& dst)
171 {
172     int start = MIN(corners.left_top.x, corners.left_bottom.x);//开始位置,即重叠区域的左边界  
173 
174     double processWidth = img1.cols - start;//重叠区域的宽度  
175     int rows = dst.rows;
176     int cols = img1.cols; //注意,是列数*通道数
177     double alpha = 1;//img1中像素的权重  
178     for (int i = 0; i < rows; i++)
179     {
180         uchar* p = img1.ptr<uchar>(i);  //获取第i行的首地址
181         uchar* t = trans.ptr<uchar>(i);
182         uchar* d = dst.ptr<uchar>(i);
183         for (int j = start; j < cols; j++)
184         {
185             //如果遇到图像trans中无像素的黑点,则完全拷贝img1中的数据
186             if (t[j * 3] == 0 && t[j * 3 + 1] == 0 && t[j * 3 + 2] == 0)
187             {
188                 alpha = 1;
189             }
190             else
191             {
192                 //img1中像素的权重,与当前处理点距重叠区域左边界的距离成正比,实验证明,这种方法确实好  
193                 alpha = (processWidth - (j - start)) / processWidth;
194             }
195 
196             d[j * 3] = p[j * 3] * alpha + t[j * 3] * (1 - alpha);
197             d[j * 3 + 1] = p[j * 3 + 1] * alpha + t[j * 3 + 1] * (1 - alpha);
198             d[j * 3 + 2] = p[j * 3 + 2] * alpha + t[j * 3 + 2] * (1 - alpha);
199 
200         }
201     }
202 }

看一看拼接效果,我觉得还是不错的。

看一下这一组图片,这组图片产生了鬼影,为什么?因为两幅图中的人物走动了啊!所以要做图像拼接,尽量保证使用的是静态图片,不要加入一些动态因素干扰拼接。

opencv自带的拼接算法stitch

opencv其实自己就有实现图像拼接的算法,当然效果也是相当好的,但是因为其实现很复杂,而且代码量很庞大,其实在一些小应用下的拼接有点杀鸡用牛刀的感觉。最近在阅读sticth源码时,发现其中有几个很有意思的地方。

1.opencv stitch选择的特征检测方式

一直很好奇opencv stitch算法到底选用了哪个算法作为其特征检测方式,是ORB,SIFT还是SURF?读源码终于看到答案。

1 #ifdef HAVE_OPENCV_NONFREE
2         stitcher.setFeaturesFinder(new detail::SurfFeaturesFinder());
3 #else
4         stitcher.setFeaturesFinder(new detail::OrbFeaturesFinder());
5 #endif

在源码createDefault函数中(默认设置),第一选择是SURF,第二选择才是ORB(没有NONFREE模块才选),所以既然大牛们这么选择,必然是经过综合考虑的,所以应该SURF算法在图像拼接有着更优秀的效果。

2.opencv stitch获取匹配点的方式

以下代码是opencv stitch源码中的特征点提取部分,作者使用了两次特征点提取的思路:先对图一进行特征点提取和筛选匹配(1->2),再对图二进行特征点的提取和匹配(2->1),这跟我们平时的一次提取的思路不同,这种二次提取的思路可以保证更多的匹配点被选中,匹配点越多,findHomography求出的变换越准确。这个思路值得借鉴。

 1 matches_info.matches.clear();
 2 
 3 Ptr<flann::IndexParams> indexParams = new flann::KDTreeIndexParams();
 4 Ptr<flann::SearchParams> searchParams = new flann::SearchParams();
 5 
 6 if (features2.descriptors.depth() == CV_8U)
 7 {
 8     indexParams->setAlgorithm(cvflann::FLANN_INDEX_LSH);
 9     searchParams->setAlgorithm(cvflann::FLANN_INDEX_LSH);
10 }
11 
12 FlannBasedMatcher matcher(indexParams, searchParams);
13 vector< vector<DMatch> > pair_matches;
14 MatchesSet matches;
15 
16 // Find 1->2 matches
17 matcher.knnMatch(features1.descriptors, features2.descriptors, pair_matches, 2);
18 for (size_t i = 0; i < pair_matches.size(); ++i)
19 {
20     if (pair_matches[i].size() < 2)
21         continue;
22     const DMatch& m0 = pair_matches[i][0];
23     const DMatch& m1 = pair_matches[i][1];
24     if (m0.distance < (1.f - match_conf_) * m1.distance)
25     {
26         matches_info.matches.push_back(m0);
27         matches.insert(make_pair(m0.queryIdx, m0.trainIdx));
28     }
29 }
30 LOG("\n1->2 matches: " << matches_info.matches.size() << endl);
31 
32 // Find 2->1 matches
33 pair_matches.clear();
34 matcher.knnMatch(features2.descriptors, features1.descriptors, pair_matches, 2);
35 for (size_t i = 0; i < pair_matches.size(); ++i)
36 {
37     if (pair_matches[i].size() < 2)
38         continue;
39     const DMatch& m0 = pair_matches[i][0];
40     const DMatch& m1 = pair_matches[i][1];
41     if (m0.distance < (1.f - match_conf_) * m1.distance)
42         if (matches.find(make_pair(m0.trainIdx, m0.queryIdx)) == matches.end())
43             matches_info.matches.push_back(DMatch(m0.trainIdx, m0.queryIdx, m0.distance));
44 }
45 LOG("1->2 & 2->1 matches: " << matches_info.matches.size() << endl);

这里我仿照opencv源码二次提取特征点的思路对我原有拼接代码进行改写,实验证明获取的匹配点确实较一次提取要多。

 1 //提取特征点    
 2 SiftFeatureDetector Detector(1000);  // 海塞矩阵阈值,在这里调整精度,值越大点越少,越精准 
 3 vector<KeyPoint> keyPoint1, keyPoint2;
 4 Detector.detect(image1, keyPoint1);
 5 Detector.detect(image2, keyPoint2);
 6 
 7 //特征点描述,为下边的特征点匹配做准备    
 8 SiftDescriptorExtractor Descriptor;
 9 Mat imageDesc1, imageDesc2;
10 Descriptor.compute(image1, keyPoint1, imageDesc1);
11 Descriptor.compute(image2, keyPoint2, imageDesc2);
12 
13 FlannBasedMatcher matcher;
14 vector<vector<DMatch> > matchePoints;
15 vector<DMatch> GoodMatchePoints;
16 
17 MatchesSet matches;
18 
19 vector<Mat> train_desc(1, imageDesc1);
20 matcher.add(train_desc);
21 matcher.train();
22 
23 matcher.knnMatch(imageDesc2, matchePoints, 2);
24 
25 // Lowe's algorithm,获取优秀匹配点
26 for (int i = 0; i < matchePoints.size(); i++)
27 {
28     if (matchePoints[i][0].distance < 0.4 * matchePoints[i][1].distance)
29     {
30         GoodMatchePoints.push_back(matchePoints[i][0]);
31         matches.insert(make_pair(matchePoints[i][0].queryIdx, matchePoints[i][0].trainIdx));
32     }
33 }
34 cout<<"\n1->2 matches: " << GoodMatchePoints.size() << endl;
35 
36 #if 1
37 
38 FlannBasedMatcher matcher2;
39 matchePoints.clear();
40 vector<Mat> train_desc2(1, imageDesc2);
41 matcher2.add(train_desc2);
42 matcher2.train();
43 
44 matcher2.knnMatch(imageDesc1, matchePoints, 2);
45 // Lowe's algorithm,获取优秀匹配点
46 for (int i = 0; i < matchePoints.size(); i++)
47 {
48     if (matchePoints[i][0].distance < 0.4 * matchePoints[i][1].distance)
49     {
50         if (matches.find(make_pair(matchePoints[i][0].trainIdx, matchePoints[i][0].queryIdx)) == matches.end())
51         {
52             GoodMatchePoints.push_back(DMatch(matchePoints[i][0].trainIdx, matchePoints[i][0].queryIdx, matchePoints[i][0].distance));
53         }
54         
55     }
56 }
57 cout<<"1->2 & 2->1 matches: " << GoodMatchePoints.size() << endl;
58 #endif

最后再看一下opencv stitch的拼接效果吧~速度虽然比较慢,但是效果还是很好的。

 1 #include <iostream>
 2 #include <opencv2/core/core.hpp>
 3 #include <opencv2/highgui/highgui.hpp>
 4 #include <opencv2/imgproc/imgproc.hpp>
 5 #include <opencv2/stitching/stitcher.hpp>
 6 using namespace std;
 7 using namespace cv;
 8 bool try_use_gpu = false;
 9 vector<Mat> imgs;
10 string result_name = "dst1.jpg";
11 int main(int argc, char * argv[])
12 {
13     Mat img1 = imread("34.jpg");
14     Mat img2 = imread("35.jpg");
15 
16     imshow("p1", img1);
17     imshow("p2", img2);
18 
19     if (img1.empty() || img2.empty())
20     {
21         cout << "Can't read image" << endl;
22         return -1;
23     }
24     imgs.push_back(img1);
25     imgs.push_back(img2);
26 
27 
28     Stitcher stitcher = Stitcher::createDefault(try_use_gpu);
29     // 使用stitch函数进行拼接
30     Mat pano;
31     Stitcher::Status status = stitcher.stitch(imgs, pano);
32     if (status != Stitcher::OK)
33     {
34         cout << "Can't stitch images, error code = " << int(status) << endl;
35         return -1;
36     }
37     imwrite(result_name, pano);
38     Mat pano2 = pano.clone();
39     // 显示源图像,和结果图像
40     imshow("全景图像", pano);
41     if (waitKey() == 27)
42         return 0;
43 }

posted on 2020-12-23 11:21  一杯清酒邀明月  阅读(1858)  评论(0编辑  收藏  举报