一杯清酒邀明月
天下本无事,庸人扰之而烦耳。

主要是用来平滑图像的,克服了高斯模糊的缺陷,各向异性扩散在平滑图像时是保留图像边缘的(和双边滤波很像)。

通常我们有将图像看作矩阵的,看作图的,看作随机过程的,记得过去还有看作力场的。

这次新鲜,将图像看作热量场了。每个像素看作热流,根据当前像素和周围像素的关系,来确定是否要向周围扩散。比如某个邻域像素和当前像素差别较大,则代表这个邻域像素很可能是个边界,那么当前像素就不向这个方向扩散了,这个边界也就得到保留了。

先看下效果吧:

具体的推导公式都是热学上的,自己也不太熟悉,感兴趣的可以去看原论文,引用量超7000吶。

我这里只介绍一下最终结论用到的公式。

主要迭代方程如下:

 I就是图像了,因为是个迭代公式,所以有迭代次数t。

四个散度公式是在四个方向上对当前像素求偏导,news就是东南西北嘛,公式如下:

 而cN/cS/cE/cW则代表四个方向上的导热系数,边界的导热系数都是小的。公式如下:

 

 最后整个公式需要先前设置的参数主要有三个,迭代次数t,根据情况设置;导热系数相关的k,取值越大越平滑,越不易保留边缘;lambda同样也是取值越大越平滑。

最后是matlab代码:

 1 clear all;
 2 close all;
 3 clc;
 4 
 5 k=15;           %导热系数,控制平滑
 6 lambda=0.15;    %控制平滑
 7 N=20;           %迭代次数
 8 img=double(imread('lena.jpg'));
 9 imshow(img,[]);
10 [m n]=size(img);
11 
12 imgn=zeros(m,n);
13 for i=1:N
14 
15     for p=2:m-1
16         for q=2:n-1
17             %当前像素的散度,对四个方向分别求偏导,局部不同方向上的变化量,
18             %如果变化较多,就证明是边界,想方法保留边界
19             NI=img(p-1,q)-img(p,q);
20             SI=img(p+1,q)-img(p,q);
21             EI=img(p,q-1)-img(p,q);
22             WI=img(p,q+1)-img(p,q);
23             
24             %四个方向上的导热系数,该方向变化越大,求得的值越小,从而达到保留边界的目的
25             cN=exp(-NI^2/(k*k));
26             cS=exp(-SI^2/(k*k));
27             cE=exp(-EI^2/(k*k));
28             cW=exp(-WI^2/(k*k));
29             
30             imgn(p,q)=img(p,q)+lambda*(cN*NI+cS*SI+cE*EI+cW*WI);  %扩散后的新值      
31         end
32     end
33     
34     img=imgn;       %整个图像扩散完毕,用已扩散图像的重新扩散。
35 end
36 
37 figure;
38 imshow(imgn,[]);

 

posted on 2020-09-10 16:25  一杯清酒邀明月  阅读(303)  评论(0编辑  收藏  举报