一杯清酒邀明月
天下本无事,庸人扰之而烦耳。

最近在分析一些数据,就是数据拟合的一些事情,用到了matlab的polyfit函数,效果不错。

因此想了解一下这个多项式具体是如何拟合出来的,所以就搜了相关资料。

这个文档介绍的还不错,我估计任何一本数值分析教材上讲的都非常清楚。

推导就不再写了,我主要参考下面两页PPT,公式和例子讲的比较清楚。

公式:

例子:

matlab代码如下:

 1 clear all;
 2 close all;
 3 clc;
 4 
 5 N=10;                %设置拟合阶数
 6 x=1:0.5:10;
 7 y=cos(x);           %生成待拟合点
 8 
 9 p=polyfit(x,y,N);   %使用matlab函数拟合数据
10 
11 xx=min(x):0.01:max(x);
12 yy=polyval(p,xx);
13             
14 plot(xx,yy);        %画出拟合结果
15 hold on;
16 plot(x,y,'r.')
17 
18 %下面是使用公式来做最小二乘多项式拟合
19 F=zeros(N+1,length(x));
20 F(1,:)=1;
21 for i=2:N+1
22    for j=1:length(x) 
23         F(i,j) = x(j)^(i-1);      
24    end
25 end
26 F=F*F';
27 
28 [m ~]=size(F);
29 Y=zeros(m,1);
30 Y(1) = sum(y);
31 for i=2:m
32     for j=1:length(y)
33         Y(i) = Y(i)+y(j)*x(j)^(i-1);
34     end  
35 end
36 
37 Re = F\Y;
38 Re=Re(end:-1:1)';  %数组反序
39 figure;
40 plot(x,y,'r.')
41 hold on;
42 yyy=polyval(Re,xx);
43 plot(xx,yyy,'g')
44 
45 p
46 Re

matlab的polyfit函数结果:

自己的结果:

在阶数较低的时候两种方法结果基本一致,阶数很高的时候,自己的方法结果就差一些了,matlab原生函数效果还是好一些啊。

posted on 2020-09-10 14:53  一杯清酒邀明月  阅读(766)  评论(0编辑  收藏  举报