# -*- coding: utf-8 -*- """ Created on 2015/7/7 10:08 使用动态规划算法实现编辑距离的计算 @author: Wang Xu """ import numpy as np class LevenshteinDistance: def leDistance(self, input_x, input_y): xlen = len(input_x) + 1 # 此处需要多开辟一个元素存储最后一轮的计算结果 ylen = len(input_y) + 1 dp = np.zeros(shape=(xlen, ylen), dtype=int) for i in range(0, xlen): dp[i][0] = i for j in range(0, ylen): dp[0][j] = j for i in range(1, xlen): for j in range(1, ylen): if input_x[i - 1] == input_y[j - 1]: dp[i][j] = dp[i - 1][j - 1] else: dp[i][j] = 1 + min(dp[i - 1][j], dp[i][j - 1], dp[i - 1][j - 1]) return dp[xlen - 1][ylen - 1] if __name__ == '__main__': ld = LevenshteinDistance() print(ld.leDistance('瓦罐蹄膀饭', '瓦罐焖蹄饭')) # Prints 2 print(ld.leDistance('', 'a')) # Prints 1 print(ld.leDistance('b', '')) # Prints 1 print(ld.leDistance('', '')) # Prints 0 print(ld.leDistance('杭椒小炒肉面', '外婆小肉面')) # Prints 3 print(ld.leDistance('外婆小肉面', '杭椒小炒肉面')) # Prints 3
来自:http://codepub.cn/2015/07/07/Python-implementation-string-similarity-edit-distance/