大家好,我是程序视点的小二哥!今天我们继续来聊聊ElasticSearch!
前言
先自上而下,后自底向上的介绍ElasticSearch的底层工作原理,试图回答以下问题:
-
为什么我的搜索 _foo-bar_ 无法匹配_foo-bar_?
-
为什么增加更多的文件会压缩索引(Index)?
-
为什么ElasticSearch占用很多内存?
图解ElasticSearch
云上的集群
云里面的每个白色正方形的盒子代表一个节点——Node。
节点之间
在一个或者多个节点直接,多个绿色小方块组合在一起形成一个ElasticSearch的索引。
索引里的小方块
在一个索引下,分布在多个节点里的绿色小方块称为分片——Shard。
一个ElasticSearch的Shard本质上是一个Lucene Index。
Lucene是一个Full Text 搜索库(也有很多其他形式的搜索库),ElasticSearch是建立在Lucene之上的。接下来的故事要说的大部分内容实际上是ElasticSearch如何基于Lucene工作的。
图解Lucene
Mini索引——segment
在Lucene里面有很多小的segment,我们可以把它们看成Lucene内部的mini-index。
有着许多数据结构
-
Inverted Index
-
Stored Fields
-
Document Values
-
Cache
Inverted Index主要包括两部分:
-
一个有序的数据字典Dictionary(包括单词Term和它出现的频率)。
-
与单词Term对应的Postings(即存在这个单词的文件)。
当我们搜索的时候,首先将搜索的内容分解,然后在字典里找到对应Term,从而查找到与搜索相关的文件内容。
如果想要查找以字母“c”开头的字母,可以简单的通过二分查找(Binary Search)在Inverted Index表中找到例如“choice”、“coming”这样的词(Term)。
如果想要查找所有包含“our”字母的单词,那么系统会扫描整个Inverted Index,这是非常昂贵的。
问题的转化
-
suffix -> xiffus *如果我们想以后缀作为搜索条件,可以为Term做反向处理。
-
(60.6384, 6.5017) -> u4u8gyykk对于GEO位置信息,可以将它转换为GEO Hash。
-
123 -> {1-hundreds, 12-tens, 123}对于简单的数字,可以为它生成多重形式的Term。
解决拼写错误
一个Python库 为单词生成了一个包含错误拼写信息的树形状态机,解决拼写错误的问题。
当我们想要查找包含某个特定标题内容的文件时,Inverted Index就不能很好的解决这个问题,所以Lucene提供了另外一种数据结构Stored Fields来解决这个问题。本质上,Stored Fields是一个简单的键值对key-value。默认情况下,ElasticSearch会存储整个文件的JSON source。
即使这样,我们发现以上结构仍然无法解决诸如:排序、聚合、facet,因为我们可能会要读取大量不需要的信息。所以,另一种数据结构解决了此种问题:Document Values。这种结构本质上就是一个列式的存储,它高度优化了具有相同类型的数据的存储结构。
搜索发生时
搜索时,Lucene会搜索所有的segment然后将每个segment的搜索结果返回,最后合并呈现给客户。Lucene的一些特性使得这个过程非常重要:
-
Segments是不可变的(immutable)
-
Delete?当删除发生时,Lucene做的只是将其标志位置为删除,但是文件还是会在它原来的地方,不会发生改变
-
Update?所以对于更新来说,本质上它做的工作是:先删除,然后重新索引(Re-index)
-
随处可见的压缩Lucene非常擅长压缩数据,基本上所有教科书上的压缩方式,都能在Lucene中找到。
-
缓存所有的所有Lucene也会将所有的信息做缓存,这大大提高了它的查询效率。
缓存的故事
当ElasticSearch索引一个文件的时候,会为文件建立相应的缓存,并且会定期(每秒)刷新这些数据,然后这些文件就可以被搜索到。
举个栗子
有两个segment将会merge
ElasticSearch从Shard中搜索的过程与Lucene Segment中搜索的过程类似。
当我们想搜索特定日期产生的日志时,通过根据时间戳对日志文件进行分块与索引,会极大提高搜索效率。当我们想要删除旧的数据时也非常方便,只需删除老的索引即可。
如何Scale
所以,如果当集群节点压力增长到一定的程度,我们可能会考虑增加新的节点,这就会要求我们对所有数据进行重新索引,这是我们不太希望看到的,所以我们需要在规划的时候就考虑清楚,如何去平衡足够多的节点与不足节点之间的关系。
节点分配与Shard优化
-
为更重要的数据索引节点,分配性能更好的机器
-
确保每个shard都有副本信息replica
每个节点,每个都存留一份路由表,所以当请求到任何一个节点时,ElasticSearch都有能力将请求转发到期望节点的shard进一步处理。
Aggregation
请求分发
这个请求可能被分发到集群里的任意一个节点
-
根据索引信息,判断请求会被路由到哪个核心节点
-
以及哪个副本是可用的
-
等等
路由
ElasticSearch 会将Query转换成Lucene Query
-
filters可以在任何时候使用
-
query只有在需要score的时候才使用
返回
搜索结束之后,结果会沿着下行的路径向上逐层返回。
【程序视点】助力打工人减负,从来不是说说而已!
后续小二哥会继续详细分享更多实用的工具和功能。持续关注,这样就不会错过之后的精彩内容啦!
如果这篇文章对你有帮助的话,别忘了【点赞】【分享】支持下哦~