望穿秋水
管理&技术&业务 项目管理方面:加强通过工具辅助管理,构建Web项目管理系统来协助项目管理。技术开发方面:加强系统分析能力、架构设计能力,时刻把握新技术动态。业务方面:加强需求分析能力,使最终需求来源于客户又高于客户。

关于数据仓库的概念,这里不再累赘。先看下面的图(数据仓库建设的7个主要环节):

dw

本文,主要针对第三块数据仓库模型设计来讨论交流,尤其是互联网行业。

一、关于数据仓库数据模型

dw1. 数据仓库数据模型是指使用实体、属性及其关系对企业运营和逻辑规则进行统一的定义、编码和命名;是业务人员和开发人员之间沟通的一套语言。

2. 数据仓库数据模型的作用:

  • 统一企业的数据视图;
  • 定义业务部门对于数据信息的需求;
  • 是构建数据仓库原子层的基础;
  • 支持数据仓库的发展规划;
  • 初始化业务数据的归属;

 

3. 数据仓库数据模型与业务系统数据模型设计的区别:

dw4. 数据仓库数据模型设计的先后次序

  • 概念模型设计(业务模型):界定系统边界;确定主要的主题域及其内容;
  • 逻辑模型设计:维度建模方法(事实表、维度表);以星型和雪花型来组织数据;
  • 物理模型设计:将数据仓库的逻辑模型物理化到数据库的过程;

二、关于维度模型和关系模型

dw

关系建模又叫ER建模,是数据仓库之父Inmon推崇的,其从全企业的高度设计一个3NF模型的方法,用实体加关系描述的数据模型描述企业业务架构,在范式理论上符合3NF,其是站在企业角度进行面向主题的抽象,而不是针对某个具体业务流程的,它更多是面向数据的整合和一致性治理,正如Inmon所希望达到的“single version of the truth”。

dw

维度模型则是数据仓库领域另一位大师Ralph Kimball 所倡导的。维度建模以分析决策的需求为出发点构建模型,一般有较好的大规模复杂查询的响应性能,更直接面向业务,典型的代表是我们比较熟知的星形模型,以及在一些特殊场景下适用的雪花模型。

dw

两者的主要区别在于灵活性和性能方面。

dw

 

另外,关系模型要求数据以最细粒度存在,而多维模型则以轻粒度汇总数据存在。

(记得十年前,某大型保险公司实施EDW项目,采用的就是关系模型,由IBM专门的团队负责建模,好家伙)。

在我看来,如果不是实施业务相对成熟的EDW,大多数据仓库均会采用维度模型建模;

三、互联网数据仓库数据模型

1. 互联网数据仓库的现实状况

dw2. 我们的模型方法选择

dw

在我们的数据仓库中,除了各个主题域下的维度模型,还存在一些宽表模型。所谓宽表模型,是基于维度模型的扩展,采用退化维度的方式,将不同维度的度量放入数据表的不同的列中;它更易于理解,具有更高的查询效率;易于模型扩展;

dw

事实证明,在海量数据环境下,对业务查询的支撑,宽表在性能和易用性方面,都达到了比较理想的效果。

转载请注明:lxw的大数据田地 » 数据仓库之数据模型

posted on 2018-06-29 10:52  望穿秋水  阅读(371)  评论(0编辑  收藏  举报