procedure2012
It's not worth it to know you're not worth it!

[题目来源]:Japan 2007

[关键字]:图论 最小生成树

[题目大意]:求一棵生成树让最大边最小边差值最小

//=====================================================================================================

[分析]:首先将边进行排序,然后依次枚举么一个边作为生成树中的最小边利用克鲁斯卡尔算法求最小生成树,如果此时求出的结果由于之前的值就更新。因为克鲁斯卡尔算法就是每次取可以取的最小边加入生成树中,所以利用它求出来的最小生成树一定是以枚举的边作为最小边的所有可能值中最优的。

[代码]:

View Code
 1 type
2 rec = record
3 x, y, d: longint;
4 end;
5
6 var
7 n, m, i, now, ans, min, max: longint;
8 e: array[0..55010] of rec;
9 f: array[0..1000] of longint;
10
11 procedure qs(l, r: longint);
12 var
13 i, j, mid: longint;
14 t: rec;
15 begin
16 i := l;
17 j := r;
18 mid := e[(l+r) div 2].d;
19 repeat
20 while e[i].d < mid do inc(i);
21 while e[j].d > mid do dec(j);
22 if i <= j then
23 begin
24 t := e[i];
25 e[i] := e[j];
26 e[j] := t;
27 inc(i);
28 dec(j);
29 end;
30 until i > j;
31 if l < j then qs(l,j);
32 if i < r then qs(i,r);
33 end;
34
35 function get(k: longint):longint;
36 begin
37 if f[k] = k then exit(k);
38 f[k] := get(f[k]);
39 get := f[k];
40 end;
41
42 procedure kur(st: longint);
43 var
44 i, p, x, y: longint;
45 begin
46 p := 0;
47 for i := 1 to n do f[i] := i;
48 i := st;
49 min := e[st].d;
50 while (p < n-1) or (i <= m) do
51 begin
52 x := get(e[i].x);
53 y := get(e[i].y);
54 if x <> y then
55 begin
56 f[x] := y;
57 max := e[i].d;
58 inc(p);
59 end;
60 inc(i);
61 end;
62 if p <> n-1 then now := maxlongint else now := max-min;
63 end;
64
65 begin
66 readln(n,m);
67 while not((n = 0) and (m = 0)) do
68 begin
69 fillchar(e,sizeof(e),0);
70 for i := 1 to m do
71 readln(e[i].x,e[i].y,e[i].d);
72 qs(1,m);
73 ans := maxlongint;
74 for i := 1 to m-n+2 do
75 begin
76 kur(i);
77 if now < ans then ans := now;
78 end;
79 if ans = maxlongint then writeln(-1) else writeln(ans);
80 readln(n,m);
81 end;
82 end.



posted on 2011-11-02 16:18  procedure2012  阅读(232)  评论(0编辑  收藏  举报