[题目来源]:POJ 1062
[关键字]:最短路径 枚举
[题目大意]:n件物品,每件物品有一个价值和登记,可以直接买也可以通过买别的东西再交换来优惠,但等级向差n的两间物品无能进行交换。问买到1物品的最小花费。
//================================================================================================
[分析]:首先将问题简化:不考虑等级限制。很简单,将能物品x与需要它来优惠的物品y间连一条权为优惠价的有向边,然后将所有物品初值都赋为其本身价值,然后SPFA即可。现在有了等级限制怎么办?我们可以枚举等级区间,以一件物品的等级作为区间上界,则凡满足:0<=l[st]-l[i]<=m(st是枚举的上界)的点都选入,然后按刚才所说SPFA,最后取f[1]最小的值。注意此处不一定是以酋长作为区间上界或起点因为酋长不一定最高或最低,若以其为上(下)界,则少了等级处于酋长两边的物品处于同一区间的状态。
//=================================================================================================
[代码]:
C++
#include<iostream> #include<cstdio> #include<cstring> #include<cstdlib> #include<algorithm> #include<set> using namespace std; const int MAXN=110; const int INF=0x7fffffff; int S,n,m,tot; int a[MAXN][MAXN],level[MAXN],L[MAXN],d[MAXN]; bool v[MAXN]; set<int> SET; void Init() { scanf("%d%d",&m,&n); S=0; memset(a,100,sizeof(a)); for (int i=1;i<=n;++i) { int x,y,z; scanf("%d%d%d",&x,&y,&z); a[S][i]=x,level[i]=y; if (SET.find(y)==SET.end() || SET.empty()) L[++tot]=y,SET.insert(y); for (int j=1;j<=z;++j) { scanf("%d%d",&x,&y); a[x][i]=y; } } /*for (int i=0;i<=n;++i) { for (int j=0;j<=n;++j) printf("%d ",a[i][j]); printf("\n"); }*/ } int Dij(int st,int x) { memset(d,100,sizeof(d)); memset(v,0,sizeof(v)); d[st]=0; //printf("%d\n",L[x]); for (int i=0;i<=n;++i) { int Min=INF,Minj=-1; for (int j=0;j<=n;++j) if (!v[j] && (j==S || (L[x]<=level[j] && level[j]<=m+L[x])) && Min>d[j]) Min=d[Minj=j]; v[Minj]=1; //printf("%d ",Minj); for (int j=0;j<=n;++j) if (!v[j] && (j==S || (L[x]<=level[j] && level[j]<=m+L[x])) && d[j]>d[Minj]+a[Minj][j]) d[j]=d[Minj]+a[Minj][j]; } return d[1]; } void Solve() { int ans=INF; sort(L+1,L+1+tot); //for (int i=1;i<=n;++i) printf("%d ",level[i]); //printf("\n"); for (int i=1;i<=tot;++i) { int temp=Dij(S,i); //printf("%d\n",temp); if (temp<ans) ans=temp; } printf("%d\n",ans); } int main() { Init(); Solve(); return 0; }
View Code
1 type
2 rec = record
3 y, d, n: longint
4 end;
5 var
6 tot, n, m: longint;
7 e: array[0..2000] of rec;
8 link: array[0..200] of longint;
9 v, l, d: array[0..200] of longint;
10 b: array[0..200] of boolean;
11 q: array[0..2000] of longint;
12
13 procedure make(x, y, d: longint);
14 begin
15 inc(tot);
16 e[tot].y := y;
17 e[tot].d := d;
18 e[tot].n := link[x];
19 link[x] := tot;
20 end;
21
22 procedure init;
23 var
24 i, j, t, y, d: longint;
25 begin
26 readln(m,n);
27 for i := 1 to n do
28 begin
29 read(v[i],l[i],t);
30 for j := 1 to t do
31 begin
32 read(y,d);
33 make(y,i,d);
34 end;
35 end;
36 end;
37
38 function spfa(st: longint): longint;
39 var
40 h, t, temp, x, y, i: longint;
41 begin
42 h := 1;
43 t := 0;
44 fillchar(b,sizeof(b),false);
45 fillchar(d,sizeof(d),100);
46 for i := 1 to n do
47 if (l[st]-l[i] >= 0) and (l[st]-l[i] <= m) then
48 begin
49 inc(t);
50 q[t] := i;
51 d[i] := v[i];
52 b[i] := true;
53 end;
54 while h <= t do
55 begin
56 x := q[h];
57 temp := link[x];
58 while temp > 0 do
59 begin
60 y := e[temp].y;
61 if (l[st]-l[y] >= 0) and (l[st]-l[y] <= m) then
62 if d[y] > d[x]+e[temp].d then
63 begin
64 d[y] := d[x]+e[temp].d;
65 if not b[y] then
66 begin
67 inc(t);
68 q[t] := y;
69 b[y] := true;
70 end;
71 end;
72 temp := e[temp].n;
73 end;
74 b[x]:= false;
75 inc(h);
76 end;
77 exit(d[1]);
78 end;
79
80 procedure work;
81 var
82 i, ans, temp: longint;
83 begin
84 ans := maxlongint;
85 for i := 1 to n do
86 begin
87 temp := spfa(i);
88 if ans > temp then ans := temp;
89 end;
90 writeln(ans);
91 end;
92
93 begin
94 init;
95 work;
96 end.