GBDT通过多轮迭代,每轮迭代产生一个弱分类器,其中弱分类器通常选择为CART树,每个分类器在上一轮分类器的残差基础上进行训练。
对于GBDT算法,其中重要的知识点为:
1、GBDT是梯度下降法从参数空间上升到函数空间的算法
2、其属于集成算法Boosting
3、损失函数的构造
一、GBDT损失函数
下面对于其损失函数做简单的讲解:
GBDT的模型如下,其中T表示每棵树,总共集成了M颗。
其损失函数表示:
对于其中的L函数该如何选择,也就是关系到GBDT的损失函数构造问题了。一般来说,对于分类问题,选择对数损失;对于回归问题,选择最小二乘损失。
二、梯度下降
GBDT是梯度下降法从参数空间上升到函数空间的算法,也就是说,他的梯度求导,是关于树函数的。这也很好理解,通常我们求决策树的损失函数,是为了评价树的质量,而不是根据损失函数求参数,因为树的构造不需要损失函数,直接通过信息增益、信息增益率、基尼系数等构造的。但是N颗树该如何构造,也就是说每棵树需要达到什么样的效果对于GBDT的损失函数最小,这才是其梯度下降需要关注的。
作者:禅在心中
出处:http://www.cnblogs.com/pinking/
本文版权归作者和博客园共有,欢迎批评指正及转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。