打赏
禅在心中
东风夜放花千树,更吹落、星如雨。宝马雕车香满路。凤箫声动,玉壶光转,一夜鱼龙舞。 蛾儿雪柳黄金缕,笑语盈盈暗香去。众里寻他千百度,蓦然回首,那人却在,灯火阑珊处。

 

概率分布有两种类型:离散(discrete)概率分布和连续(continuous)概率分布。

离散概率分布也称为概率质量函数(probability mass function)。离散概率分布的例子有伯努利分布(Bernoulli distribution)、二项分布(binomial distribution)、泊松分布(Poisson distribution)和几何分布(geometric distribution)等。

连续概率分布也称为概率密度函数(probability density function),它们是具有连续取值(例如一条实线上的值)的函数。正态分布(normal distribution)、指数分布(exponential distribution)和β分布(beta distribution)等都属于连续概率分布。

 

1、两点分布(伯努利分布)

伯努利试验:

伯努利试验是在同样的条件下重复地、各次之间相互独立地进行的一种试验。

即只先进行一次伯努利试验,该事件发生的概率为p,不发生的概率为1-p。这是一个最简单的分布,任何一个只有两种结果的随机现象都服从0-1分布。

最常见的例子为抛硬币

其中,

期望E = p

方差D = p*(1-p)^2+(1-p)*(0-p)^2 = p*(1-p)

 

 2、二项分布(n重伯努利分布)(X~B(n,p))

即做n个两点分布的实验

其中,

E = np

D = np(1-p)

对于二项分布,可以参考https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.binom.html

二项分布的应用场景主要是,对于已知次数n,关心发生k次成功。

,即为二项分布公式可求。

 

对于抛硬币的问题,做100次实验,观察其概率分布函数:

from scipy.stats import binom
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np

## 设置属性防止中文乱码
mpl.rcParams['font.sans-serif'] = [u'SimHei']
mpl.rcParams['axes.unicode_minus'] = False

  首先导入库函数以及设置对中文的支持

fig,ax = plt.subplots(1,1)
n = 100
p = 0.5
#平均值, 方差, 偏度, 峰度
mean,var,skew,kurt = binom.stats(n,p,moments='mvsk')
print mean,var,skew,kurt
#ppf:累积分布函数的反函数。q=0.01时,ppf就是p(X<x)=0.01时的x值。
x = np.arange(binom.ppf(0.01, n, p),binom.ppf(0.99, n, p))
ax.plot(x, binom.pmf(x, n, p),'o')
plt.title(u'二项分布概率质量函数')
plt.show()

  

 

 

观察概率分布图,可以看到,对于n = 100次实验中,有50次成功的概率(正面向上)的概率最大。

3、几何分布(X ~ GE(p))

在n次伯努利实验中,第k次实验才得到第一次成功的概率分布。其中:P(k) = (1-p)^(k-1)*p

E = 1/p  推到方法就是利用利用错位相减法然后求lim - k ->无穷 

D = (1-p)/p^2  推到方法利用了D(x) = E(x)^2-E(x^2),其中E(x^2)求解同上

几何分布可以参考:https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.geom.html#scipy.stats.geom

fig,ax = plt.subplots(1,1)
p = 0.5
#平均值, 方差, 偏度, 峰度
mean,var,skew,kurt = geom.stats(p,moments='mvsk')
print mean,var,skew,kurt
#ppf:累积分布函数的反函数。q=0.01时,ppf就是p(X<x)=0.01时的x值。
x = np.arange(geom.ppf(0.01, p),geom.ppf(0.99, p))
ax.plot(x, geom.pmf(x, p),'o')
plt.title(u'几何分布概率质量函数')
plt.show()

  

 

因此,可以看到,对于抛硬币问题,抛个两三次就能成功。

 

4、泊松分布(X~P(λ))

描述单位时间/面积内,随机事件发生的次数。P(x = k) = λ^k/k!*e^(-λ)   k = 0,1,2, ...    λ >0

泊松分布可作为二项分布的极限而得到。一般的说,若  ,其中n很大,p很小,因而  不太大时,X的分布接近于泊松分布  。

λ:单位时间/面积下,随机事件的平均发生率

E = λ

D = λ

譬如:某一服务设施一定时间内到达的人数、一个月内机器损坏的次数等。

 假设某地区,一年中发生枪击案的平均次数为2。

fig,ax = plt.subplots(1,1)
mu = 2
#平均值, 方差, 偏度, 峰度
mean,var,skew,kurt = poisson.stats(mu,moments='mvsk')
print mean,var,skew,kurt
#ppf:累积分布函数的反函数。q=0.01时,ppf就是p(X<x)=0.01时的x值。
x = np.arange(poisson.ppf(0.01, mu),poisson.ppf(0.99, mu))
ax.plot(x, poisson.pmf(x, mu),'o')
plt.title(u'poisson分布概率质量函数')
plt.show()

  

 

因此,一年内的枪击案发生次数的分布如上所示。

 

与二项分布对比:

fig,ax = plt.subplots(1,1)

n = 1000
p = 0.1
#平均值, 方差, 偏度, 峰度
mean,var,skew,kurt = binom.stats(n,p,moments='mvsk')
print mean,var,skew,kurt
#ppf:累积分布函数的反函数。q=0.01时,ppf就是p(X<x)=0.01时的x值。
x = np.arange(binom.ppf(0.01, n, p),binom.ppf(0.99, n, p))
p1, = ax.plot(x, binom.pmf(x, n, p),'b*',label = 'binom')

mu = n*p
#平均值, 方差, 偏度, 峰度
mean,var,skew,kurt = poisson.stats(mu,moments='mvsk')
print mean,var,skew,kurt
#ppf:累积分布函数的反函数。q=0.01时,ppf就是p(X<x)=0.01时的x值。
x = np.arange(poisson.ppf(0.01, mu),poisson.ppf(0.99, mu))
p2, = ax.plot(x, poisson.pmf(x, mu),'ro',label = 'poisson')

plt.legend(handles = [p1, p2])
plt.title(u'对比')
plt.show()

  

 5、均匀分布(X~U(a,b))

对于随机变量x的概率密度函数:

则称随机变量X服从区间[a,b]上的均匀分布。

E = 0.5(a+b)

D = (b-a)^2 / 12

均匀分布在自然情况下极为罕见,而人工栽培的有一定株行距的植物群落即是均匀分布。这表明X落在[a,b]的子区间内的概率只与子区间长度有关,而与子区间位置无关,因此X落在[a,b]的长度相等的子区间内的可能性是相等的,所谓的均匀指的就是这种等可能性。

落在某一点的概率都是相同的

若[x1,x2]是[a,b]的任一子区间,则

P{x1≤x≤x2}=(x2-x1)/(b-a)

这表明X落在[a,b]的子区间内的概率只与子区间长度有关,而与子区间位置无关。

fig,ax = plt.subplots(1,1)

loc = 1
scale = 1

#平均值, 方差, 偏度, 峰度
mean,var,skew,kurt = uniform.stats(loc,scale,moments='mvsk')
print mean,var,skew,kurt
#ppf:累积分布函数的反函数。q=0.01时,ppf就是p(X<x)=0.01时的x值。
x = np.linspace(uniform.ppf(0.01,loc,scale),uniform.ppf(0.99,loc,scale),100)
ax.plot(x, uniform.pdf(x,loc,scale),'b-',label = 'uniform')

plt.title(u'均匀分布概率密度函数')
plt.show()

 

 

 6、指数分布X~ E(λ)

 E = 1/λ

 D = 1/λ^2

fig,ax = plt.subplots(1,1)

lambdaUse = 2
loc = 0
scale = 1.0/lambdaUse

#平均值, 方差, 偏度, 峰度
mean,var,skew,kurt = expon.stats(loc,scale,moments='mvsk')
print mean,var,skew,kurt
#ppf:累积分布函数的反函数。q=0.01时,ppf就是p(X<x)=0.01时的x值。
x = np.linspace(expon.ppf(0.01,loc,scale),expon.ppf(0.99,loc,scale),100)
ax.plot(x, expon.pdf(x,loc,scale),'b-',label = 'expon')

plt.title(u'指数分布概率密度函数')
plt.show()

  

 指数分布通常用来表示随机事件发生的时间间隔,其中lambda和poisson分布的是一个概念(我认为),不知道为什么知乎上https://www.zhihu.com/question/24796044他们为啥说这俩不一样呢?我觉得这两种分布的期望肯定不一样啊,一个描述发生次数,一个描述两次的时间间隔,互为倒数也是应该的啊。

指数分布常用来表示旅客进机场的时间间隔、电子产品的寿命分布(需要高稳定的产品,现实中要考虑老化的问题

 

指数分布的特性:无记忆性

比如灯泡的使用寿命服从指数分布,无论他已经使用多长一段时间,假设为s,只要还没有损坏,它能再使用一段时间t 的概率与一件新产品使用时间t 的概率一样。

这个证明过程简单表示:

P(s+t| s) = P(s+t , s)/P(s) = F(s+t)/F(s)=P(t)

 

7、正态分布(X~N(μ,σ^2))

 

E = μ

D = σ^2

 正态分布是比较常见的,譬如学生考试成绩的人数分布等

fig,ax = plt.subplots(1,1)


loc = 1
scale = 2.0
#平均值, 方差, 偏度, 峰度
mean,var,skew,kurt = norm.stats(loc,scale,moments='mvsk')
print mean,var,skew,kurt
#ppf:累积分布函数的反函数。q=0.01时,ppf就是p(X<x)=0.01时的x值。
x = np.linspace(norm.ppf(0.01,loc,scale),norm.ppf(0.99,loc,scale),100)
ax.plot(x, norm.pdf(x,loc,scale),'b-',label = 'norm')

plt.title(u'正太分布概率密度函数')
plt.show()

  

 

补充:

大数定理:

随着样本的增加,样本的平均数将接近于总体的平均数,故推断中,一般会使用样本平均数估计总体平均数。

 大数定律讲的是样本均值收敛到总体均值

中心极限定理:

独立同分布的事件,具有相同的期望和方差,则事件服从中心极限定理。他表示了对于抽取样本,n足够大的时候,样本分布符合x~N(μ,σ^2)

中心极限定理告诉我们,当样本量足够大时,样本均值的分布慢慢变成正态分布

 

posted on 2017-11-26 11:42  禅在心中  阅读(48947)  评论(0编辑  收藏  举报