Pennant的日常
分享工作上的点点滴滴
posts - 75,comments - 21,views - 66443

深度估计问题

   从输入的单目或双目图像,计算图像物体与摄像头之间距离(输出距离图),双目的距离估计应该是比较成熟和完善,但往单目上考虑主要还是成本的问题,所以做好单目的深度估计有一定的意义。单目的意思是只有一个摄像头,同一个时间点只有一张图片。就象你闭上一只眼睛,只用一只眼睛看这个世界的事物一样,距离感也会同时消失。

深度估计与语义分割的区别,及监督学习的深度估计问题

  深度估计与语义分割有一定的联系,但也有一些区别。

  •   图像的语义分割是识别每个像素的类别,不管这个像素出现在图像的那个位置,是一个分类任务。
  •   而深度估计是识别每个像素与当前摄像头的距离,相同的车出现在图像的不同位置,其距离有可能不一样,是一个回归任务。  

  在深度估计上直接使用语义分割的方案,是可以达到一定的效果,但因为以上的区别,所以要把深度估计做好还是值得探讨。另外,  

  深度估计有监督学习的方案,但深度估计的监督学习存在两个问题:

  1.  监督学习所需要的label,制作上的代价比较大,不利于把方案应用到更多情境或验证;
  2.  如果以激光雷达的数据作为label,但激光雷达的探测距离比视觉近,一些超越探测距离的区域无法训练。

  基于这些问题,本论文提出一种不需要真实深度label的自监督方法。

基本原理

   作者巧妙地利用SFM(Structure from motion)原理同时训练DepthNet(深度估计网络)和PoseNet(姿态估计网络),使用它们的输出重构图像I^与原图像I进行比较,免除真实深度label的需要。

   选择从时间上连续的三张图像,分别是It1ItIt+1。DepthNet学习It的深度并输出深度图D^t,PoseNet从It分别到It1It+1学习转换矩阵T^tt1T^tt+1,如上图,图像It里的p点可以通过对应的深度值D^t(p)和转换矩阵T^tt1投影到It1上对应位置pt1

    psKT^tsD^t(pt)K1pt

  其中,K是摄像头的内参矩阵(出厂时进行标定或自己标定)。

  投影到的位置后使用相邻像素进行双线性插值进行图像重建,以光度重建缺失同时训练两个网络。

     Lvs=sp|It(p)I^s(p)|

局限性

应用在视频时,方案包含了三个假设前提

1. 依赖于SFM,如果图像里的物体是“静止”,其实是该物体和本身的运动速度一致,那个该物体在不同时间上的视图里,不会发生变化,固“静止”。

2. 不考虑遮挡,是先把要处理的问题简单化。

3. 重建损失的前提。

局限性解决

 1. 解决静止和遮挡

  增加一个可解释性预测网络,该网络为每个目标-源对输出每个像素的软掩码E^s,表明网络信任那些目标像素能进行视图合成。基于E^s后的损失函数为

    Lvs=<I1,...,IN>∈SpE^s(p)|It(p)I^s(p)|

  由于不能对E^s直接监督,使用上述的损失进行训练将导致网络总是预测E^s为零(就最小化了损失)。为了解决这个问题,添加一个正则项Lreg(E^s),通过在每个像素位置上使用常数标签1最小化交叉熵损失来鼓励非零预测。

2. 克服梯度局部性

  上述的学习方式还有一个遗留问题,梯度主要来自I(pt)和它4个邻居之间的像素强度差,如果像素位于低纹理区域或远离当前估计,则会抑制训练。解决这个问题有两个方案:

  1. 使用总面积encoder-deconder架构,深度网络的输出隐含地约束全局平滑,并促进梯度从有意义的区域传播到附近的区域。

  2. 明确的多尺度和平滑损失,允许直接从更大的空间区域导出梯度。

  作者选择第二种方案,原因是它对架构选择不太敏感。为了平滑,作者最小化预测深度图的二阶梯度的L1范数。最终的损失函数为:

    Lfinal=lLvsl+λsLsmoothl+λesLreg(E^sl)

总结

  在作者提出该方案前,已经存在基于深度值的监督学习和基于姿态的监督学习,他的出发点是以多种有相关性的任务同时学习,从而融合它们的学习结果可以回归到原图像,这使一方面同时训练多个相关模型,另一方面能起到自监督的效果。从这篇论文开始,单目深度估计进入自监督学习的阶段。

posted on   汝熹  阅读(147)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 单元测试从入门到精通
· 上周热点回顾(3.3-3.9)
· winform 绘制太阳,地球,月球 运作规律
< 2025年3月 >
23 24 25 26 27 28 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5

点击右上角即可分享
微信分享提示