J'KYO
No pains,no gains.

Sqoop 是 apache 下用于 RDBMS 和 HDFS 互相导数据的工具。本文以 mysql 数据库为例,实现关系数据库导入到 hdfs 和 hive。

1. 安装 Sqoop

使用 rpm 安装即可。

yum install sqoop sqoop-metastore -y

安装完之后需要下载 mysql jar 包到 sqoop 的 lib 目录。

这里使用 hive 的 metastore 的 mysql 数据库作为关系数据库,以 TBLS 表为例,该表结构和数据如下:

mysql> select * from TBLS limit 3;
+------+-----------+-----+----------------+-----+--------+------+---------+----------------+------------------+-------------------+
|TBL_ID|CREATE_TIME|DB_ID|LAST_ACCESS_TIME|OWNER|RETENTI | SD_ID| TBL_NAME| TBL_TYPE       |VIEW_EXPANDED_TEXT| VIEW_ORIGINAL_TEXT|
+------+-----------+-----+----------------+-----+--------+------+---------+----------------+------------------+-------------------+
|    34|1406784308 |    8|               0|root |       0|    45| test1   | EXTERNAL_TABLE | NULL             | NULL              |
|    40|1406797005 |    9|               0|root |       0|    52| test2   | EXTERNAL_TABLE | NULL             | NULL              |
|    42|1407122307 |    7|               0|root |       0|    59| test3   | EXTERNAL_TABLE | NULL             | NULL              |
+------+-----------+-----+----------------+-----+--------+------+---------+----------------+------------------+-------------------+

2. 使用

2.1 命令说明

查看 sqoop 命令说明:

$ sqoop help
usage: sqoop COMMAND [ARGS]

Available commands:
  codegen            Generate code to interact with database records
  create-hive-table  Import a table definition into Hive
  eval               Evaluate a SQL statement and display the results
  export             Export an HDFS directory to a database table
  help               List available commands
  import             Import a table from a database to HDFS
  import-all-tables  Import tables from a database to HDFS
  list-databases     List available databases on a server
  list-tables        List available tables in a database
  version            Display version information

See 'sqoop help COMMAND' for information on a specific command.

你也可以查看某一个命令的使用说明:

$ sqoop import --help
$ sqoop help import

你也可以使用别名来代替 sqoop (toolname)

$ sqoop-import

sqoop import 的一个示例如下:

$ sqoop import --connect jdbc:mysql://192.168.56.121:3306/metastore --username hiveuser --password redhat --table TBLS

你还可以使用 --options-file 来传入一个文件,使用这种方式可以重用一些配置参数:

$ sqoop --options-file /users/homer/work/import.txt --table TEST

/users/homer/work/import.txt 文件内容如下:

import
--connect
jdbc:mysql://192.168.56.121:3306/metastore
--username
hiveuser
--password 
redhat

2.2 导入数据到 hdfs

使用 sqoop-import 命令可以从关系数据库导入数据到 hdfs。

$ sqoop import --connect jdbc:mysql://192.168.56.121:3306/metastore --username hiveuser --password redhat --table TBLS --target-dir /user/hive/result

注意:

  • mysql jdbc url 请使用 ip 地址
  • 如果重复执行,会提示目录已经存在,可以手动删除
  • 如果不指定 --target-dir,导入到用户家目录下的 TBLS 目录

你还可以指定其他的参数:

参数说明
--append 将数据追加到hdfs中已经存在的dataset中。使用该参数,sqoop将把数据先导入到一个临时目录中,然后重新给文件命名到一个正式的目录中,以避免和该目录中已存在的文件重名。
--as-avrodatafile 将数据导入到一个Avro数据文件中|
--as-sequencefile 将数据导入到一个sequence文件中
--as-textfile 将数据导入到一个普通文本文件中,生成该文本文件后,可以在hive中通过sql语句查询出结果。
--boundary-query <statement> 边界查询,也就是在导入前先通过SQL查询得到一个结果集,然后导入的数据就是该结果集内的数据,格式如:--boundary-query 'select id,no from t where id = 3',表示导入的数据为id=3的记录,或者 select min(<split-by>), max(<split-by>) from <table name>,注意查询的字段中不能有数据类型为字符串的字段,否则会报错
--columns<col,col> 指定要导入的字段值,格式如:--columns id,username
--direct 直接导入模式,使用的是关系数据库自带的导入导出工具。官网上是说这样导入会更快
--direct-split-size 在使用上面direct直接导入的基础上,对导入的流按字节数分块,特别是使用直连模式从PostgreSQL导入数据的时候,可以将一个到达设定大小的文件分为几个独立的文件。
--inline-lob-limit 设定大对象数据类型的最大值
-m,--num-mappers 启动N个map来并行导入数据,默认是4个,最好不要将数字设置为高于集群的节点数
--query,-e <sql> 从查询结果中导入数据,该参数使用时必须指定–target-dir–hive-table,在查询语句中一定要有where条件且在where条件中需要包含 \$CONDITIONS,示例:--query 'select * from t where \$CONDITIONS ' --target-dir /tmp/t –hive-table t
--split-by <column> 表的列名,用来切分工作单元,一般后面跟主键ID
--table <table-name> 关系数据库表名,数据从该表中获取
--delete-target-dir 删除目标目录
--target-dir <dir> 指定hdfs路径
--warehouse-dir <dir> 与 --target-dir 不能同时使用,指定数据导入的存放目录,适用于hdfs导入,不适合导入hive目录
--where 从关系数据库导入数据时的查询条件,示例:--where "id = 2"
-z,--compress 压缩参数,默认情况下数据是没被压缩的,通过该参数可以使用gzip压缩算法对数据进行压缩,适用于SequenceFile, text文本文件, 和Avro文件
--compression-codec Hadoop压缩编码,默认是gzip
--null-string <null-string> 可选参数,如果没有指定,则字符串null将被使用
--null-non-string <null-string> 可选参数,如果没有指定,则字符串null将被使用|

示例程序:

$ sqoop import --connect jdbc:mysql://192.168.56.121:3306/metastore --username hiveuser --password redhat --table TBLS --columns "tbl_id,create_time" --where "tbl_id > 1" --target-dir /user/hive/result

使用 sql 语句

参照上表,使用 sql 语句查询时,需要指定 $CONDITIONS

$ sqoop import --connect jdbc:mysql://192.168.56.121:3306/metastore --username hiveuser --password redhat --query 'SELECT * from TBLS where \$CONDITIONS ' --split-by tbl_id -m 4 --target-dir /user/hive/result

上面命令通过 -m 1 控制并发的 map 数。

使用 direct 模式:

$ sqoop import --connect jdbc:mysql://192.168.56.121:3306/metastore --username hiveuser --password redhat --table TBLS --delete-target-dir --direct --default-character-set UTF-8 --target-dir /user/hive/result

指定文件输出格式:

$ sqoop import --connect jdbc:mysql://192.168.56.121:3306/metastore --username hiveuser --password redhat --table TBLS --fields-terminated-by "\t" --lines-terminated-by "\n" --delete-target-dir  --target-dir /user/hive/result

这时候查看 hdfs 中数据(观察分隔符是否为制表符):

$ hadoop fs -ls result
Found 5 items
-rw-r--r--   3 root hadoop          0 2014-08-04 16:07 result/_SUCCESS
-rw-r--r--   3 root hadoop         69 2014-08-04 16:07 result/part-m-00000
-rw-r--r--   3 root hadoop          0 2014-08-04 16:07 result/part-m-00001
-rw-r--r--   3 root hadoop        142 2014-08-04 16:07 result/part-m-00002
-rw-r--r--   3 root hadoop         62 2014-08-04 16:07 result/part-m-00003

$ hadoop fs -cat result/part-m-00000
34  1406784308  8   0   root    0   45  test1   EXTERNAL_TABLE  null    null    null

$ hadoop fs -cat result/part-m-00002
40  1406797005  9   0   root    0   52  test2   EXTERNAL_TABLE  null    null    null
42  1407122307  7   0   root    0   59  test3   EXTERNAL_TABLE  null    null    null

指定空字符串:

$ sqoop import --connect jdbc:mysql://192.168.56.121:3306/metastore --username hiveuser --password redhat --table TBLS --fields-terminated-by "\t" --lines-terminated-by "\n" --delete-target-dir --null-string '\\N' --null-non-string '\\N' --target-dir /user/hive/result

如果需要指定压缩:

$ sqoop import --connect jdbc:mysql://192.168.56.121:3306/metastore --username hiveuser --password redhat --table TBLS --fields-terminated-by "\t" --lines-terminated-by "\n" --delete-target-dir --null-string '\\N' --null-non-string '\\N' --compression-codec "com.hadoop.compression.lzo.LzopCodec" --target-dir /user/hive/result

附:可选的文件参数如下表。

参数说明
--enclosed-by <char> 给字段值前后加上指定的字符,比如双引号,示例:--enclosed-by '\"',显示例子:"3","jimsss","dd@dd.com"
--escaped-by <char> 给双引号作转义处理,如字段值为"测试",经过 --escaped-by "\\" 处理后,在hdfs中的显示值为:\"测试\",对单引号无效
--fields-terminated-by <char> 设定每个字段是以什么符号作为结束的,默认是逗号,也可以改为其它符号,如句号.,示例如:--fields-terminated-by
--lines-terminated-by <char> 设定每条记录行之间的分隔符,默认是换行串,但也可以设定自己所需要的字符串,示例如:--lines-terminated-by "#" 以#号分隔
--mysql-delimiters Mysql默认的分隔符设置,字段之间以,隔开,行之间以换行\n隔开,默认转义符号是\,字段值以单引号'包含起来。
--optionally-enclosed-by <char> enclosed-by是强制给每个字段值前后都加上指定的符号,而--optionally-enclosed-by只是给带有双引号或单引号的字段值加上指定的符号,故叫可选的

2.3 创建 hive 表

生成与关系数据库表的表结构对应的HIVE表:

$ sqoop create-hive-table --connect jdbc:mysql://192.168.56.121:3306/metastore --username hiveuser --password redhat --table TBLS 
参数说明
--hive-home <dir> Hive的安装目录,可以通过该参数覆盖掉默认的hive目录
--hive-overwrite 覆盖掉在hive表中已经存在的数据
--create-hive-table 默认是false,如果目标表已经存在了,那么创建任务会失败
--hive-table 后面接要创建的hive表
--table 指定关系数据库表名

2.4 导入数据到 hive

执行下面的命令会将 mysql 中的数据导入到 hdfs 中,然后创建一个hive 表,最后再将 hdfs 上的文件移动到 hive 表的目录下面。

$ sqoop import --connect jdbc:mysql://192.168.56.121:3306/metastore --username hiveuser --password redhat --table TBLS --fields-terminated-by "\t" --lines-terminated-by "\n" --hive-import --hive-overwrite --create-hive-table --hive-table dw_srclog.TBLS --delete-target-dir

说明:

  • 可以在 hive 的表名前面指定数据库名称
  • 可以通过 --create-hive-table 创建表,如果表已经存在则会执行失败

接下来可以查看 hive 中的数据:

$ hive -e 'select * from dw_srclog.tbls'
34  1406784308  8   0   root    0   45  test1   EXTERNAL_TABLE  null    null    NULL
40  1406797005  9   0   root    0   52  test2   EXTERNAL_TABLE  null    null    NULL
42  1407122307  7   0   root    0   59  test3   EXTERNAL_TABLE  null    null    NULL

直接查看文件内容:

$ hadoop fs -cat /user/hive/warehouse/dw_srclog.db/tbls/part-m-00000
34140678430880root045go_goodsEXTERNAL_TABLEnullnullnull
40140679700590root052merchantEXTERNAL_TABLEnullnullnull

从上面可见,数据导入到 hive 中之后分隔符为默认分隔符,参考上文你可以通过设置参数指定其他的分隔符。

另外,Sqoop 默认地导入空值(NULL)为 null 字符串,而 hive 使用 \N 去标识空值(NULL),故你在 import 或者 export 时候,需要做相应的处理。在 import 时,使用如下命令:

$ sqoop import  ... --null-string '\\N' --null-non-string '\\N'

在导出时,使用下面命令:

$ sqoop import  ... --input-null-string '' --input-null-non-string ''

一个完整的例子如下:

$ sqoop import --connect jdbc:mysql://192.168.56.121:3306/metastore --username hiveuser --password redhat --table TBLS --fields-terminated-by "\t" --lines-terminated-by "\n" --hive-import --hive-overwrite --create-hive-table --hive-table dw_srclog.TBLS --null-string '\\N' --null-non-string '\\N' --compression-codec "com.hadoop.compression.lzo.LzopCodec"

2.5 增量导入

参数说明
--check-column (col) 用来作为判断的列名,如id
--incremental (mode) append:追加,比如对大于last-value指定的值之后的记录进行追加导入。lastmodified:最后的修改时间,追加last-value指定的日期之后的记录
--last-value (value) 指定自从上次导入后列的最大值(大于该指定的值),也可以自己设定某一值

2.6 合并 hdfs 文件

将HDFS中不同目录下面的数据合在一起,并存放在指定的目录中,示例如:

sqoop merge –new-data /test/p1/person –onto /test/p2/person –target-dir /test/merged –jar-file /opt/data/sqoop/person/Person.jar –class-name Person –merge-key id

其中,–class-name 所指定的 class 名是对应于 Person.jar 中的 Person 类,而 Person.jar 是通过 Codegen 生成的

参数说明
--new-data <path> Hdfs中存放数据的一个目录,该目录中的数据是希望在合并后能优先保留的,原则上一般是存放越新数据的目录就对应这个参数。
--onto <path> Hdfs中存放数据的一个目录,该目录中的数据是希望在合并后能被更新数据替换掉的,原则上一般是存放越旧数据的目录就对应这个参数。
--merge-key <col> 合并键,一般是主键ID
--jar-file <file> 合并时引入的jar包,该jar包是通过Codegen工具生成的jar包
--class-name <class> 对应的表名或对象名,该class类是包含在jar包中的。
--target-dir <path> 合并后的数据在HDFS里的存放目录

3. 参考文章

 
利用sqoop将hive数据导入导出数据到mysql

运行环境  centos 5.6   hadoop  hive
sqoop是让hadoop技术支持的clouder公司开发的一个在关系数据库和hdfs,hive之间数据导入导出的一个工具


在使用过程中可能遇到的问题:

  • sqoop依赖zookeeper,所以必须配置ZOOKEEPER_HOME到环境变量中。
  • sqoop-1.2.0-CDH3B4依赖hadoop-core-0.20.2-CDH3B4.jar,所以你需要下载hadoop-0.20.2-CDH3B4.tar.gz,解压缩后将hadoop-0.20.2-CDH3B4/hadoop-core-0.20.2-CDH3B4.jar复制到sqoop-1.2.0-CDH3B4/lib中。

1  首先安装sqoop,如果你使用的是clouder分发版的话就非常简单  
   # yum install sqoop
  如果用官方版本的话 
   # cd /etc/yum.repos.d
   # wget http://archive.cloudera.com/redhat/cdh/cloudera-cdh3.repo
   # yum -y install sqoop
   sqoop就会安装完成
2  使用sqoop
   首先将mysql-connector-java-5.1.16-bin.jar文件复制到/usr/lib/sqoop/lib文件夹下
   
3  导入导出数据库
   1)列出mysql数据库中的所有数据库命令
  #  sqoop list-databases --connect jdbc:mysql://localhost:3306/ --username root --password 123456
   
   2)连接mysql并列出数据库中的表命令
   # sqoop list-tables --connect jdbc:mysql://localhost:3306/test --username root --password 123456
   命令中的test为mysql数据库中的test数据库名称  username password分别为mysql数据库的用户密码
   
   3)将关系型数据的表结构复制到hive中
 sqoop create-hive-table --connect jdbc:mysql://localhost:3306/test --table username --username root --password 123456 --hive-table test
其中 --table username为mysql中的数据库test中的表   --hive-table test 为hive中新建的表名称
   
   4)从关系数据库导入文件到hive中
sqoop import --connect jdbc:mysql://localhost:3306/test --username root --password mysql-password --table t1 --hive-import

   5)将hive中的表数据导入到mysql中

./sqoop export --connect jdbc:mysql://localhost:3306/test --username root --password admin --table uv_info --export-dir /user/hive/warehouse/uv/dt=2011-08-03

如果报错
11/08/05 10:51:22 INFO mapred.JobClient: Running job: job_201108051007_0010  
11/08/05 10:51:23 INFO mapred.JobClient:  map 0% reduce 0%  
11/08/05 10:51:36 INFO mapred.JobClient: Task Id : attempt_201108051007_0010_m_000000_0, Status : FAILED 
java.util.NoSuchElementException  
        at java.util.AbstractList$Itr.next(AbstractList.java:350)  
        at uv_info.__loadFromFields(uv_info.java:194)  
        at uv_info.parse(uv_info.java:143)  
        at com.cloudera.sqoop.mapreduce.TextExportMapper.map(TextExportMapper.java:79) 
        at com.cloudera.sqoop.mapreduce.TextExportMapper.map(TextExportMapper.java:38) 
        at org.apache.hadoop.mapreduce.Mapper.run(Mapper.java:144)  
        at com.cloudera.sqoop.mapreduce.AutoProgressMapper.run(AutoProgressMapper.java:187) 
        at org.apache.hadoop.mapred.MapTask.runNewMapper(MapTask.java:647)  
        at org.apache.hadoop.mapred.MapTask.run(MapTask.java:323)  
        at org.apache.hadoop.mapred.Child$4.run(Child.java:270)  
        at java.security.AccessController.doPrivileged(Native Method)  
        at javax.security.auth.Subject.doAs(Subject.java:396)  
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1127) 
        at org.apache.hadoop.mapred.Child.main(Child.java:264)  
此错误的原因为sqoop解析文件的字段与MySql数据库的表的字段对应不上造成的。因此需要在执行的时候给sqoop增加参数,告诉sqoop文件的分隔符,使它能够正确的解析文件字段。

hive默认的字段分隔符为'\001'
./sqoop export --connect jdbc:mysql://localhost:3306/datacenter --username root --password admin --table uv_info --export-dir /user/hive/warehouse/uv/dt=2011-08-03 --input-fields-terminated-by '\t'

参考http://archive.cloudera.com/cdh/3/sqoop/SqoopUserGuide.html#_literal_sqoop_create_hive_table_literal

sqoop把mysql导入hive时报错:Could not load org.apache.hadoop.hive.conf.HiveConf.
问题1:
使用sqoop把mysql导入hive时报错
# sqoop import --hive-import --connect jdbc:mysql://10.1.32.34:3306/dicts --username sqoop --password sqoop -m 1 --table nodist --create-hive-table

[plain] view plain copy
 
  1. 16/02/18 17:01:15 INFO mapreduce.Job: Running job: job_1455812803225_0020  
  2. 16/02/18 17:01:24 INFO mapreduce.Job: Job job_1455812803225_0020 running in uber mode : false  
  3. 16/02/18 17:01:24 INFO mapreduce.Job:  map 0% reduce 0%  
  4. 16/02/18 17:01:33 INFO mapreduce.Job:  map 25% reduce 0%  
  5. 16/02/18 17:01:34 INFO mapreduce.Job:  map 50% reduce 0%  
  6. 16/02/18 17:01:41 INFO mapreduce.Job:  map 100% reduce 0%  
  7. 16/02/18 17:01:41 INFO mapreduce.Job: Job job_1455812803225_0020 completed successfully  
  8. 16/02/18 17:01:41 INFO mapreduce.Job: Counters: 30  
  9.         File System Counters  
  10.                 FILE: Number of bytes read=0  
  11.                 FILE: Number of bytes written=555640  
  12.                 FILE: Number of read operations=0  
  13.                 FILE: Number of large read operations=0  
  14.                 FILE: Number of write operations=0  
  15.                 HDFS: Number of bytes read=473  
  16.                 HDFS: Number of bytes written=8432  
  17.                 HDFS: Number of read operations=16  
  18.                 HDFS: Number of large read operations=0  
  19.                 HDFS: Number of write operations=8  
  20.         Job Counters   
  21.                 Launched map tasks=4  
  22.                 Other local map tasks=4  
  23.                 Total time spent by all maps in occupied slots (ms)=25664  
  24.                 Total time spent by all reduces in occupied slots (ms)=0  
  25.                 Total time spent by all map tasks (ms)=25664  
  26.                 Total vcore-seconds taken by all map tasks=25664  
  27.                 Total megabyte-seconds taken by all map tasks=26279936  
  28.         Map-Reduce Framework  
  29.                 Map input records=91  
  30.                 Map output records=91  
  31.                 Input split bytes=473  
  32.                 Spilled Records=0  
  33.                 Failed Shuffles=0  
  34.                 Merged Map outputs=0  
  35.                 GC time elapsed (ms)=351  
  36.                 CPU time spent (ms)=4830  
  37.                 Physical memory (bytes) snapshot=802369536  
  38.                 Virtual memory (bytes) snapshot=6319828992  
  39.                 Total committed heap usage (bytes)=887095296  
  40.         File Input Format Counters   
  41.                 Bytes Read=0  
  42.         File Output Format Counters   
  43.                 Bytes Written=8432  
  44. 16/02/18 17:01:41 INFO mapreduce.ImportJobBase: Transferred 8,2344 KB in 30,7491 seconds (274,219 bytes/sec)  
  45. 16/02/18 17:01:41 INFO mapreduce.ImportJobBase: Retrieved 91 records.  
  46.   
  47.   
  48. 16/02/18 17:01:41 WARN hive.TableDefWriter: Column last_updated had to be cast to a less precise type in Hive  
  49. 16/02/18 17:01:41 INFO hive.HiveImport: Loading uploaded data into Hive  
  50. 16/02/18 17:01:41 ERROR hive.HiveConfig:<span style="color:#ff0000;"> Could not load org.apache.hadoop.hive.conf.HiveConf. Make sure HIVE_CONF_DIR is set correctly.</span>  
  51. 16/02/18 17:01:41 ERROR tool.ImportTool: Encountered IOException running import job: java.io.IOException: java.lang.ClassNotFoundException: org.apache.hadoop.hive.conf.HiveConf  
  52.         at org.apache.sqoop.hive.HiveConfig.getHiveConf(HiveConfig.java:50)  
  53.         at org.apache.sqoop.hive.HiveImport.getHiveArgs(HiveImport.java:392)  
  54.         at org.apache.sqoop.hive.HiveImport.executeExternalHiveScript(HiveImport.java:379)  
  55.         at org.apache.sqoop.hive.HiveImport.executeScript(HiveImport.java:337)  
  56.         at org.apache.sqoop.hive.HiveImport.importTable(HiveImport.java:241)  
  57.         at org.apache.sqoop.tool.ImportTool.importTable(ImportTool.java:514)  
  58.         at org.apache.sqoop.tool.ImportTool.run(ImportTool.java:605)  
  59.         at org.apache.sqoop.Sqoop.run(Sqoop.java:143)  
  60.         at org.apache.hadoop.util.ToolRunner.run(ToolRunner.java:70)  
  61.         at org.apache.sqoop.Sqoop.runSqoop(Sqoop.java:179)  
  62.         at org.apache.sqoop.Sqoop.runTool(Sqoop.java:218)  
  63.         at org.apache.sqoop.Sqoop.runTool(Sqoop.java:227)  
  64.         at org.apache.sqoop.Sqoop.main(Sqoop.java:236)  
  65. Caused by: <span style="color:#ff0000;">java.lang.ClassNotFoundException: org.apache.hadoop.hive.conf.HiveConf</span>  
  66.         at java.net.URLClassLoader$1.run(URLClassLoader.java:366)  
  67.         at java.net.URLClassLoader$1.run(URLClassLoader.java:355)  
  68.         at java.security.AccessController.doPrivileged(Native Method)  
  69.         at java.net.URLClassLoader.findClass(URLClassLoader.java:354)  
  70.         at java.lang.ClassLoader.loadClass(ClassLoader.java:425)  
  71.         at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:308)  
  72.         at java.lang.ClassLoader.loadClass(ClassLoader.java:358)  
  73.         at java.lang.Class.forName0(Native Method)  
  74.         at java.lang.Class.forName(Class.java:195)  
  75.         at org.apache.sqoop.hive.HiveConfig.getHiveConf(HiveConfig.java:44)  
  76.         ... 12 more  


        
解决:
在hdfs用户下添加环境变量HADOOP_CLASSPATH
# vi ~/.bash_profile
export HADOOP_CLASSPATH=$HADOOP_CLASSPATH:/opt/cloudera/parcels/CDH/lib/hive/lib/*

# source ~/.bash_profile

 

参考连接:https://community.cloudera.com/t5/Batch-SQL-Apache-Hive/Error-with-quot-Make-sure-HIVE-CONF-DIR-is-set-correctly-quot/m-p/37865#M1140

posted on 2018-04-26 14:38  J'KYO  阅读(749)  评论(0编辑  收藏  举报