posts - 35,comments - 0,views - 3101

最大正方形
在一个由 '0' 和 '1' 组成的二维矩阵内,找到只包含 '1' 的最大正方形,并返回其面积。

示例 1:

image

输入:matrix = [["1","0","1","0","0"],["1","0","1","1","1"],["1","1","1","1","1"],["1","0","0","1","0"]]
输出:4
示例 2:

image

输入:matrix = [["0","1"],["1","0"]]
输出:1
示例 3:

输入:matrix = [["0"]]
输出:0

题解

可以使用动态规划降低时间复杂度。我们用 dp[i][j]表示以下标 ij 为全部包含“1”的正方形的右下角。则当matrix[i][j]==1时有状态转移方程:dp[i][j]=min(dp[i1][j],dp[i][j1],dp[i1][j1])+1
matrix[i][j]==0时,dp[i][j]=0
最后,还需考虑边界条件,即当i=0j=0时,若 matrix[i][j]=1 ,则 dp[i][j]=1,否则dp[i][j]=0

class Solution {
public:
    int maximalSquare(vector<vector<char>>& matrix) {
        if (matrix.size() == 0 || matrix[0].size() == 0) {
            return 0;
        }
        int maxSide = 0;
        int rows = matrix.size(), columns = matrix[0].size();
        vector<vector<int>> dp(rows, vector<int>(columns));
        for (int i = 0; i < rows; i++) {
            for (int j = 0; j < columns; j++) {
                if (matrix[i][j] == '1') {
                    if (i == 0 || j == 0) {
                        dp[i][j] = 1;
                    } else {
                        dp[i][j] = min(min(dp[i - 1][j], dp[i][j - 1]), dp[i - 1][j - 1]) + 1;
                    }
                    maxSide = max(maxSide, dp[i][j]);
                }
            }
        }
        int maxSquare = maxSide * maxSide;
        return maxSquare;
    }
};
posted on   sc01  阅读(44)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 【自荐】一款简洁、开源的在线白板工具 Drawnix
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
· Docker 太简单,K8s 太复杂?w7panel 让容器管理更轻松!
< 2025年3月 >
23 24 25 26 27 28 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5

点击右上角即可分享
微信分享提示