Python--进程
使用multiprocessing进行进程管理
简单的创建进程
import multiprocessing
def worker(num):
"""thread worker function"""
print 'Worker:', num
return
if __name__ == '__main__':
jobs = []
for i in range(5):
p = multiprocessing.Process(target=worker, args=(i,))
jobs.append(p)
p.start()
确定当前的进程,即是给进程命名,方便标识区分,跟踪
import multiprocessing
import time
def worker():
name = multiprocessing.current_process().name
print name, 'Starting'
time.sleep(2)
print name, 'Exiting'
def my_service():
name = multiprocessing.current_process().name
print name, 'Starting'
time.sleep(3)
print name, 'Exiting'
if __name__ == '__main__':
service = multiprocessing.Process(name='my_service',
target=my_service)
worker_1 = multiprocessing.Process(name='worker 1',
target=worker)
worker_2 = multiprocessing.Process(target=worker) # default name
worker_1.start()
worker_2.start()
service.start()
守护进程
守护进程就是不阻挡主程序退出,自己干自己的 mutilprocess.setDaemon(True)
就这句
等待守护进程退出,要加上join,join可以传入浮点数值,等待n久就不等了
import multiprocessing
import time
import sys
def daemon():
name = multiprocessing.current_process().name
print 'Starting:', name
time.sleep(2)
print 'Exiting :', name
def non_daemon():
name = multiprocessing.current_process().name
print 'Starting:', name
print 'Exiting :', name
if __name__ == '__main__':
d = multiprocessing.Process(name='daemon',
target=daemon)
d.daemon = True
n = multiprocessing.Process(name='non-daemon',
target=non_daemon)
n.daemon = False
d.start()
n.start()
d.join(1)
print 'd.is_alive()', d.is_alive()
n.join()
终止进程
最好使用 poison pill,强制的使用terminate()
注意 terminate之后要join,使其可以更新状态
import multiprocessing
import time
def slow_worker():
print 'Starting worker'
time.sleep(0.1)
print 'Finished worker'
if __name__ == '__main__':
p = multiprocessing.Process(target=slow_worker)
print 'BEFORE:', p, p.is_alive()
p.start()
print 'DURING:', p, p.is_alive()
p.terminate()
print 'TERMINATED:', p, p.is_alive()
p.join()
print 'JOINED:', p, p.is_alive()
进程的退出状态
- == 0 未生成任何错误
-
0 进程有一个错误,并以该错误码退出
- < 0 进程由一个-1 * exitcode信号结束
import multiprocessing
import sys
import time
def exit_error():
sys.exit(1)
def exit_ok():
return
def return_value():
return 1
def raises():
raise RuntimeError('There was an error!')
def terminated():
time.sleep(3)
if __name__ == '__main__':
jobs = []
for f in [exit_error, exit_ok, return_value, raises, terminated]:
print 'Starting process for', f.func_name
j = multiprocessing.Process(target=f, name=f.func_name)
jobs.append(j)
j.start()
jobs[-1].terminate()
for j in jobs:
j.join()
print '%15s.exitcode = %s' % (j.name, j.exitcode)
日志
方便的调试,可以用logging
import multiprocessing
import logging
import sys
def worker():
print 'Doing some work'
sys.stdout.flush()
if __name__ == '__main__':
multiprocessing.log_to_stderr()
logger = multiprocessing.get_logger()
logger.setLevel(logging.INFO)
p = multiprocessing.Process(target=worker)
p.start()
p.join()
派生进程
利用class来创建进程,定制子类
import multiprocessing
class Worker(multiprocessing.Process):
def run(self):
print 'In %s' % self.name
return
if __name__ == '__main__':
jobs = []
for i in range(5):
p = Worker()
jobs.append(p)
p.start()
for j in jobs:
j.join()
python进程间传递消息
这一块我之前结合SocketServer写过一点,见Python多进程
一般的情况是Queue来传递。
import multiprocessing
class MyFancyClass(object):
def __init__(self, name):
self.name = name
def do_something(self):
proc_name = multiprocessing.current_process().name
print 'Doing something fancy in %s for %s!' % \
(proc_name, self.name)
def worker(q):
obj = q.get()
obj.do_something()
if __name__ == '__main__':
queue = multiprocessing.Queue()
p = multiprocessing.Process(target=worker, args=(queue,))
p.start()
queue.put(MyFancyClass('Fancy Dan'))
# Wait for the worker to finish
queue.close()
queue.join_thread()
p.join()
import multiprocessing
import time
class Consumer(multiprocessing.Process):
def __init__(self, task_queue, result_queue):
multiprocessing.Process.__init__(self)
self.task_queue = task_queue
self.result_queue = result_queue
def run(self):
proc_name = self.name
while True:
next_task = self.task_queue.get()
if next_task is None:
# Poison pill means shutdown
print '%s: Exiting' % proc_name
self.task_queue.task_done()
break
print '%s: %s' % (proc_name, next_task)
answer = next_task()
self.task_queue.task_done()
self.result_queue.put(answer)
return
class Task