// luogu-judger-enable-o2
/*
考虑将bfs序按层分段, 每分一段就会使深度+1,所以分的段数+1就是深度
由于每种分段方式至多只能对应一种dfs序, 所以我们的目标就是求出可行的bfs序
然后我们发现, 如果在bfs序中第i个比第i + 1个后出现在dfs序中, 那么这里一定分段
然后我们考虑dfs序对于bfs序的限制, 假设a[i] < a[i + 1]的话,意味着a[i + 1]和a[i]同层或者在下一层
那么\sum_{i = a[i]} ^ {a[i + 1] - 1} 分层<= 1
这样的话得到了一些限制以及确定位置, 没有限制的位置因为任意分都可以, 那么统计0.5答案即可
*/
#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cstring>
#include<queue>
#define mmp make_pair
#define ll long long
#define M 200010
using namespace std;
int read() {
int nm = 0, f = 1;
char c = getchar();
for(; !isdigit(c); c = getchar()) if(c == '-') f = -1;
for(; isdigit(c); c = getchar()) nm = nm * 10 + c - '0';
return nm * f;
}
double note[M], s[M];
int t[M], a[M], pos[M], f[M], sta[M], n, tp;
int main() {
double ans = 1;
n = read();
for(int i = 1; i <= n; i++) t[read()] = i;
for(int i = 1; i <= n; i++) {
int x = read();
a[t[x]] = i, pos[i] = t[x];
}
note[1] = 1;
for(int i = 1; i < n; i++) {
if(pos[i] > pos[i + 1]) note[i] = 1;
if(note[i] == 1) {
f[i]++;
f[i + 1]--;
}
s[i] = s[i - 1] + note[i];
}
for(int i = 1; i < n; i++) {
if(a[i] < a[i + 1]) {
if(s[a[i + 1] - 1] - s[a[i] - 1] > 0) {
f[a[i]]++;
f[a[i + 1]]--;
} else sta[++tp] = a[i];
}
}
for(int i = 1; i <= n; i++) f[i] += f[i - 1];
for(int i = 1; i <= tp; i++) {
if(f[sta[i]] == 0) note[sta[i]] = 0.5;
}
for(int i = 1; i <= n; i++) ans += note[i];
printf("%.3lf\n", ans);
return 0;
}