Given a binary tree, determine if it is a valid binary search tree (BST).
Assume a BST is defined as follows:
- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than the node's key.
- Both the left and right subtrees must also be binary search trees.
Example 1:
Input: 2
/ \ 1 3 Output: true
Example 2:
5 / \ 1 4 / \ 3 6 Output: false Explanation: The input is: [5,1,4,null,null,3,6]. The root node's value is 5 but its right child's value is 4.
Solution1: DFS
根据BST的性质: 左子树<根<右子树
要特别留心,对于input的root,没有办法给定一个确定的范围。所以初始化为null
5 (min, max) 5 :in(min,max)? / \ / / return true \ \ return false 1 4 1 update(min, 5), in (min, 5)? 4 update(5, 4), in (5,4)?
code
1 /** 2 * Definition for a binary tree node. 3 * public class TreeNode { 4 * int val; 5 * TreeNode left; 6 * TreeNode right; 7 * TreeNode(int x) { val = x; } 8 * } 9 */ 10 class Solution { 11 public boolean isValidBST(TreeNode root) { 12 /*why using null, null? 因为对于root,没有办法确定范围*/ 13 return helper(root, null, null); 14 } 15 /* 因为上面定义的是null,这里initialize就应该是Integer而不是int*/ 16 private boolean helper(TreeNode root, Integer min, Integer max) { 17 // base case 18 if (root == null)return true; 19 20 // based on BST attribute 21 if ((min != null && root.val <= min) || (max != null && root.val >= max)) 22 return false; 23 24 // dfs 25 Boolean left = helper(root.left, min, root.val); 26 Boolean right = helper(root.right, root.val, max); 27 return left && right; 28 } 29 }
复杂度
Time: O(n) : visit each node
Space: O(h): h is the deepest height of such tree