程序媛詹妮弗
终身学习

You are climbing a stair case. It takes n steps to reach to the top.

Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?

Note: Given n will be a positive integer.

Input: 2
Output: 2
Explanation: There are two ways to climb to the top.
1. 1 step + 1 step
2. 2 steps
-----------------------------------------------------------
Input: 3
Output: 3
Explanation: There are three ways to climb to the top.
1. 1 step + 1 step + 1 step
2. 1 step + 2 steps
3. 2 steps + 1 step

 

题意:

有n阶台阶,可以每次爬1步或者2步, 爬到终点有多少种不同的方法

 

思路:

一维dp

用一个数组存下当前 k (k<=n)阶台阶有多少种不同的走法

发现规律

爬上n阶台阶 = 爬上n-1阶台阶再爬1阶 + 爬上n-2阶台阶再爬2阶

爬上n-1阶台阶 =  爬上n-2阶台阶再爬1阶  +  爬上n-3阶台阶再爬2阶

爬上n-2阶台阶 =  爬上n-3阶台阶再爬1阶  +  爬上n-4阶台阶再爬2阶

初始化,

dp[0] = 1

dp[1] = 1

转移方程,

dp[i] = dp[i-1] + dp[i-2] 

 

代码:

 1 class Solution {
 2     public int climbStairs(int n) {
 3         int [] dp = new int[n + 1];
 4         dp[0] = 1;
 5         dp[1] = 1;
 6         for(int i = 2; i <= n; i++){
 7             dp[i] = dp[i-1] + dp[i-2];
 8         }
 9         
10         return dp[n];   
11     }
12 }

 

posted on 2018-05-19 10:00  程序媛詹妮弗  阅读(261)  评论(0编辑  收藏  举报