Java集合之List部分源码解析
Java集合之List源码解析
List是java重要的数据结构之一,而我们在生活中,常常用到ArrayList、LinkedList和Vector三种
它们都继承来自java.util.Collection接口
如图所示:
接下来了解一下,这三种List是如何实现的,以及它们之间存在什么不同点。
一、基本实现
1.ArrayList和Vector使用了数组实现,可以认为它们封装了对内部数组的操作,它们两个底层的实现基本可以认为是一致的,主要的一点区别在于对多线程的支持上。
ArrayList不是线程安全的,Vector是线程安全的。
2.LinkedList使用了双向链表数据结构
二、不同点
主要看ArrayList和LinkedList的区别
1.在尾端增加元素
ArrayList
public boolean add(E e) {
ensureCapacityInternal(size + 1); // 确保内部数组有足够的空间
elementData[size++] = e; //将元素加入到数组的末尾,完成添加
return true;
}
从add函数可以看出,其性能主要与ensureCapacityInternal函数有关
我么继续追踪这个函数
//ensureCapacityInternal函数
private void ensureCapacityInternal(int minCapacity) {
ensureExplicitCapacity(calculateCapacity(elementData, minCapacity));
}
private static int calculateCapacity(Object[] elementData, int minCapacity) {
if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
return Math.max(DEFAULT_CAPACITY, minCapacity);
}
return minCapacity;
}
private void ensureExplicitCapacity(int minCapacity) {
modCount++;
// overflow-conscious code
if (minCapacity - elementData.length > 0)
grow(minCapacity);
}
private void grow(int minCapacity) {
// overflow-conscious code
int oldCapacity = elementData.length;
int newCapacity = oldCapacity + (oldCapacity >> 1);
if (newCapacity - minCapacity < 0)
newCapacity = minCapacity;
if (newCapacity - MAX_ARRAY_SIZE > 0)
newCapacity = hugeCapacity(minCapacity);
// minCapacity is usually close to size, so this is a win:
elementData = Arrays.copyOf(elementData, newCapacity);
}
calculateCapacity方法会根据两种情况返回数组的最小容量
(1).当elementData这个数组为空数组时,则返回ArrayList默认容量(10)和所需的最小容量(minCapacity)两者的最小值
(2).当elementData非空时,则直接返回所需的最小容量
ensureExplicitCapacity方法是去判断如果所需容量大于当前对象数组的长度则调用grow方法对数组进行扩容
从这里我们可以看出来,当ArrayList数组容量满足需求的时候,add()方法其实就是直接赋值,不需要额外的开销。而当容量不足的时候,还要进行数组复制和扩容的操作,此时的性能就会有所下降。
LinkedList
//尾端插入,即将节点值为e的节点设置为链表的尾节点
void linkLast(E e) {
final Node<E> l = last;
//构建一个前驱prev值为l,节点值为e,后驱next值为null的新节点newNode
final Node<E> newNode = new Node<>(l, e, null);
//将newNode作为尾节点
last = newNode;
//如果原尾节点为null,即原链表为null,则链表首节点也设置为newNode
if (l == null)
first = newNode;
else //否则,原尾节点的next设置为newNode
l.next = newNode;
size++;
modCount++;
}
根据链表的知识我们可以知道,LinkedList是不需要去维护容量大小的,但是每次元素的增加都要先创建一个Node对象,然后进行一系列操作才可以实现在LinkedList尾端添加元素,如果是大量数据的话,性能可能会下降。
2.增加元素到任意位置
void add(int index, E element)
由于ArrayList是数组实现的,所以在数组中间插入元素的时候,必然会导致其后面的元素后移,对性能影响大。
ArrayList
public void add(int index, E element) {
rangeCheckForAdd(index);
ensureCapacityInternal(size + 1); // Increments modCount!!
//数组复制
System.arraycopy(elementData, index, elementData, index + 1,
size - index);
elementData[index] = element;
size++;
}
LinkedList
public void add(int index, E element) {
checkPositionIndex(index);
if (index == size)
linkLast(element);
else
linkBefore(element, node(index));
}
Node<E> node(int index) {
// assert isElementIndex(index);
if (index < (size >> 1)) { //元素位于前半段
Node<E> x = first;
for (int i = 0; i < index; i++)
x = x.next;
return x;
} else { //元素位于后半段
Node<E> x = last;
for (int i = size - 1; i > index; i--)
x = x.prev;
return x;
}
}
void linkBefore(E e, Node<E> succ) {
// assert succ != null;
//指定节点的前驱pred
final Node<E> pred = succ.prev;
//当前节点的前驱为指点节点的前驱,后继为指定的节点
final Node<E> newNode = new Node<>(pred, e, succ);
//更新指定节点的前驱为当前节点
succ.prev = newNode;
//更新前驱节点的后继
if (pred == null)
first = newNode;
else
pred.next = newNode;
size++;
modCount++;
}
3、删除任意位置元素
public E remove(int index)
对于ArrayList来说,remove()方法和add()方法思路上相同,在删除指定元素后,都要移动其他元素
ArrayList
public E remove(int index) {
rangeCheck(index);
modCount++;
E oldValue = elementData(index);
int numMoved = size - index - 1;
if (numMoved > 0)
//移动数组
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
elementData[--size] = null; // clear to let GC do its work
return oldValue;
}
LinkedList
public E remove(int index) {
checkElementIndex(index);
return unlink(node(index));
}
Node<E> node(int index) {
// assert isElementIndex(index);
if (index < (size >> 1)) { //位置位于前半段
Node<E> x = first;
for (int i = 0; i < index; i++)
x = x.next;
return x;
} else { //位置位于后半段
Node<E> x = last;
for (int i = size - 1; i > index; i--)
x = x.prev;
return x;
}
}
E unlink(Node<E> x) {
// assert x != null;
final E element = x.item;
final Node<E> next = x.next; //当前节点的后继
final Node<E> prev = x.prev; //当前节点的前驱
if (prev == null) {
first = next;
} else {
prev.next = next; //更新前驱节点的后继为当前节点的后继
x.prev = null;
}
if (next == null) {
last = prev;
} else {
next.prev = prev; //更新后继节点的前驱为当前节点的前驱
x.next = null;
}
x.item = null;
size--;
modCount++;
return element;
}
4、随机访问
public E get(int index)
ArrayList
public E get(int index) {
rangeCheck(index);
return elementData(index);
}
@SuppressWarnings("unchecked")
E elementData(int index) {
return (E) elementData[index];
}
我们可以看到ArrayList是直接访问的
LinkedList
public E get(int index) {
checkElementIndex(index);
return node(index).item;
}
Node<E> node(int index) {
// assert isElementIndex(index);
if (index < (size >> 1)) {
Node<E> x = first;
for (int i = 0; i < index; i++)
x = x.next;
return x;
} else {
Node<E> x = last;
for (int i = size - 1; i > index; i--)
x = x.prev;
return x;
}
}
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】博客园社区专享云产品让利特惠,阿里云新客6.5折上折
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· PowerShell开发游戏 · 打蜜蜂
· 在鹅厂做java开发是什么体验
· 百万级群聊的设计实践
· WPF到Web的无缝过渡:英雄联盟客户端的OpenSilver迁移实战
· 永远不要相信用户的输入:从 SQL 注入攻防看输入验证的重要性