K-means算法的matlab程序
在“K-means算法的matlab程序(初步)”这篇文章中已经用matlab程序对iris数据库进行简单的实现,下面的程序最终的目的是求准确度。
作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/
1.采用iris数据库
iris_data.txt
5.1 3.5 1.4 0.2 4.9 3 1.4 0.2 4.7 3.2 1.3 0.2 4.6 3.1 1.5 0.2 5 3.6 1.4 0.2 5.4 3.9 1.7 0.4 4.6 3.4 1.4 0.3 5 3.4 1.5 0.2 4.4 2.9 1.4 0.2 4.9 3.1 1.5 0.1 5.4 3.7 1.5 0.2 4.8 3.4 1.6 0.2 4.8 3 1.4 0.1 4.3 3 1.1 0.1 5.8 4 1.2 0.2 5.7 4.4 1.5 0.4 5.4 3.9 1.3 0.4 5.1 3.5 1.4 0.3 5.7 3.8 1.7 0.3 5.1 3.8 1.5 0.3 5.4 3.4 1.7 0.2 5.1 3.7 1.5 0.4 4.6 3.6 1 0.2 5.1 3.3 1.7 0.5 4.8 3.4 1.9 0.2 5 3 1.6 0.2 5 3.4 1.6 0.4 5.2 3.5 1.5 0.2 5.2 3.4 1.4 0.2 4.7 3.2 1.6 0.2 4.8 3.1 1.6 0.2 5.4 3.4 1.5 0.4 5.2 4.1 1.5 0.1 5.5 4.2 1.4 0.2 4.9 3.1 1.5 0.2 5 3.2 1.2 0.2 5.5 3.5 1.3 0.2 4.9 3.6 1.4 0.1 4.4 3 1.3 0.2 5.1 3.4 1.5 0.2 5 3.5 1.3 0.3 4.5 2.3 1.3 0.3 4.4 3.2 1.3 0.2 5 3.5 1.6 0.6 5.1 3.8 1.9 0.4 4.8 3 1.4 0.3 5.1 3.8 1.6 0.2 4.6 3.2 1.4 0.2 5.3 3.7 1.5 0.2 5 3.3 1.4 0.2 7 3.2 4.7 1.4 6.4 3.2 4.5 1.5 6.9 3.1 4.9 1.5 5.5 2.3 4 1.3 6.5 2.8 4.6 1.5 5.7 2.8 4.5 1.3 6.3 3.3 4.7 1.6 4.9 2.4 3.3 1 6.6 2.9 4.6 1.3 5.2 2.7 3.9 1.4 5 2 3.5 1 5.9 3 4.2 1.5 6 2.2 4 1 6.1 2.9 4.7 1.4 5.6 2.9 3.6 1.3 6.7 3.1 4.4 1.4 5.6 3 4.5 1.5 5.8 2.7 4.1 1 6.2 2.2 4.5 1.5 5.6 2.5 3.9 1.1 5.9 3.2 4.8 1.8 6.1 2.8 4 1.3 6.3 2.5 4.9 1.5 6.1 2.8 4.7 1.2 6.4 2.9 4.3 1.3 6.6 3 4.4 1.4 6.8 2.8 4.8 1.4 6.7 3 5 1.7 6 2.9 4.5 1.5 5.7 2.6 3.5 1 5.5 2.4 3.8 1.1 5.5 2.4 3.7 1 5.8 2.7 3.9 1.2 6 2.7 5.1 1.6 5.4 3 4.5 1.5 6 3.4 4.5 1.6 6.7 3.1 4.7 1.5 6.3 2.3 4.4 1.3 5.6 3 4.1 1.3 5.5 2.5 4 1.3 5.5 2.6 4.4 1.2 6.1 3 4.6 1.4 5.8 2.6 4 1.2 5 2.3 3.3 1 5.6 2.7 4.2 1.3 5.7 3 4.2 1.2 5.7 2.9 4.2 1.3 6.2 2.9 4.3 1.3 5.1 2.5 3 1.1 5.7 2.8 4.1 1.3 6.3 3.3 6 2.5 5.8 2.7 5.1 1.9 7.1 3 5.9 2.1 6.3 2.9 5.6 1.8 6.5 3 5.8 2.2 7.6 3 6.6 2.1 4.9 2.5 4.5 1.7 7.3 2.9 6.3 1.8 6.7 2.5 5.8 1.8 7.2 3.6 6.1 2.5 6.5 3.2 5.1 2 6.4 2.7 5.3 1.9 6.8 3 5.5 2.1 5.7 2.5 5 2 5.8 2.8 5.1 2.4 6.4 3.2 5.3 2.3 6.5 3 5.5 1.8 7.7 3.8 6.7 2.2 7.7 2.6 6.9 2.3 6 2.2 5 1.5 6.9 3.2 5.7 2.3 5.6 2.8 4.9 2 7.7 2.8 6.7 2 6.3 2.7 4.9 1.8 6.7 3.3 5.7 2.1 7.2 3.2 6 1.8 6.2 2.8 4.8 1.8 6.1 3 4.9 1.8 6.4 2.8 5.6 2.1 7.2 3 5.8 1.6 7.4 2.8 6.1 1.9 7.9 3.8 6.4 2 6.4 2.8 5.6 2.2 6.3 2.8 5.1 1.5 6.1 2.6 5.6 1.4 7.7 3 6.1 2.3 6.3 3.4 5.6 2.4 6.4 3.1 5.5 1.8 6 3 4.8 1.8 6.9 3.1 5.4 2.1 6.7 3.1 5.6 2.4 6.9 3.1 5.1 2.3 5.8 2.7 5.1 1.9 6.8 3.2 5.9 2.3 6.7 3.3 5.7 2.5 6.7 3 5.2 2.3 6.3 2.5 5 1.9 6.5 3 5.2 2 6.2 3.4 5.4 2.3 5.9 3 5.1 1.8
iris_id.txt
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2.matlab源程序:
My_Kmeans.m
function label_1=My_Kmeans(K) %输入K:聚类数 %输出:label_1:聚的类, para_miu_new:聚类中心μ format long eps=1e-5; %定义迭代终止条件的eps data=dlmread('E:\www.cnblogs.comkailugaji\data\iris\iris_data.txt'); %---------------------------------------------------------------------------------------------------- %对data做最大-最小归一化处理 [data_num,~]=size(data); X=(data-ones(data_num,1)*min(data))./(ones(data_num,1)*(max(data)-min(data))); [X_num,~]=size(X); %---------------------------------------------------------------------------------------------------- %随机初始化K个聚类中心 rand_array=randperm(X_num); %产生1~X_num之间整数的随机排列 para_miu_new=X(rand_array(1:K),:); %随机排列取前K个数,在X矩阵中取这K行作为初始聚类中心 responsivity=zeros(X_num,K); %---------------------------------------------------------------------------------------------------- %K-means算法 while true para_miu=para_miu_new; %上一步的聚类中心 %欧氏距离,计算(X-para_miu)^2=X^2+para_miu^2-2*X*para_miu',矩阵大小为X_num*K distant=repmat(sum(X.*X,2),1,K)+repmat(sum(para_miu.*para_miu,2)',X_num,1)-2*X*para_miu'; %返回distant每行最小值所在的下标 [~,label_1]=min(distant,[],2); %构建隶属度矩阵X_num*K for i=1:X_num for j=1:K responsivity(i,j)=isequal(j,label_1(i)); end end R_k=sum(responsivity,1); %分母,第k类的个数,1*k的矩阵 para_miu_new=diag(1./R_k)*responsivity'*X; %更新参数miu(聚类中心) if norm(para_miu_new-para_miu)<=eps break; end end
Eg_Kmeans.m
function ave_acc_kmeans=Eg_Kmeans(K,max_iter) %输入K:聚的类,max_iter是最大迭代次数 %输出ave_acc_kmeans:迭代max_iter次之后的平均准确度 s=0; for i=1:max_iter label_1=My_Kmeans(K); accuracy=succeed(K,label_1); s=s+accuracy; end ave_acc_kmeans=s/max_iter;
3.结果
>> ave_acc_kmeans=Eg_Kmeans(3,50) ave_acc_kmeans = 0.842533333333333