Python与MATLAB小练习:计算准确度Accuracy
作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/
分别使用Python与MATLAB编程,计算聚类准确度。思路为:首先利用匈牙利算法将训练后的标签进行调整,然后再计算准确度。
1. Python程序
1 # Python demo 2 # -*- coding: utf-8 -*- 3 # Author:凯鲁嘎吉 Coral Gajic 4 # https://www.cnblogs.com/kailugaji/ 5 # Python小练习:计算准确度Accuracy 6 # 先用匈牙利算法调整标签,然后再计算准确度 7 import numpy as np 8 # 已经调整过标签了 9 def cluster_acc(y_true, y_pred): 10 y_true = y_true.astype(np.int64) 11 assert y_pred.size == y_true.size 12 D = max(y_pred.max(), y_true.max()) + 1 13 w = np.zeros((D, D), dtype=np.int64) 14 for i in range(y_pred.size): 15 w[y_pred[i], y_true[i]] += 1 16 from sklearn.utils.linear_assignment_ import linear_assignment 17 # 匈牙利算法调整标签 18 ind = linear_assignment(w.max() - w) 19 return sum([w[i, j] for i, j in ind]) * 1.0 / y_pred.size 20 21 y_true = np.array([2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1]) 22 y_pred_1 = np.array([1, 1, 2, 1, 1, 2, 2, 2, 3, 2, 2, 3, 1, 3, 3, 2, 3]) # 未调整的标签 23 y_pred_2 = np.array([2, 2, 3, 2, 2, 3, 3, 3, 1, 3, 3, 1, 2, 1, 1, 3, 1]) # 调整后的标签 24 result_1 = cluster_acc(y_true, y_pred_1) 25 result_2 = cluster_acc(y_true, y_pred_2) 26 print('1:', result_1) 27 print('2:', result_2)
结果:
1: 0.6470588235294118 2: 0.6470588235294118
2. MATLAB程序
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 | %% MATLAB demo clear clc y_true = [2 2 2 2 2 2 3 3 3 3 3 3 1 1 1 1 1 ]; y_pred_1 = [1 1 2 1 1 2 2 2 3 2 2 3 1 3 3 2 3]; results = Evaluate(y_true,y_pred_1); fprintf ( '未调整标签的准确度:%f\n' , results(1)); % -------------------------------------------------- % 实际采用下面这个:先用匈牙利算法对标签进行调整,然后再计算准确度Accuracy y_pred_2 = label_map(y_pred_1, y_true); results = Evaluate(y_true,y_pred_2); fprintf ( '调整标签后的准确度:%f\n' , results(1)); %% MATLAB实例:Munkres指派算法 - 凯鲁嘎吉 - 博客园 % 来自:https://www.cnblogs.com/kailugaji/p/11765596.html function [assignment,cost] = munkres(costMat) % MUNKRES Munkres Assign Algorithm % % [ASSIGN,COST] = munkres(COSTMAT) returns the optimal assignment in ASSIGN % with the minimum COST based on the assignment problem represented by the % COSTMAT, where the (i,j)th element represents the cost to assign the jth % job to the ith worker. % % This is vectorized implementation of the algorithm. It is the fastest % among all Matlab implementations of the algorithm. % Examples % Example 1: a 5 x 5 example %{ [assignment,cost] = munkres( magic (5)); [assignedrows,dum]= find (assignment); disp (assignedrows'); % 3 2 1 5 4 disp (cost); %15 %} % Example 2: 400 x 400 random data %{ n=5; A= rand (n); tic [a,b]=munkres(A); toc %} % Reference: % "Munkres' Assignment Algorithm, Modified for Rectangular Matrices", % http://csclab.murraystate.edu/bob.pilgrim/445/munkres.html % version 1.0 by Yi Cao at Cranfield University on 17th June 2008 assignment = false( size (costMat)); cost = 0; costMat(costMat~=costMat)= Inf ; validMat = costMat< Inf ; validCol = any (validMat); validRow = any (validMat,2); nRows = sum (validRow); nCols = sum (validCol); n = max (nRows,nCols); if ~n return end dMat = zeros (n); dMat(1:nRows,1:nCols) = costMat(validRow,validCol); %************************************************* % Munkres' Assignment Algorithm starts here %************************************************* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % STEP 1: Subtract the row minimum from each row. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% dMat = bsxfun (@minus, dMat, min (dMat,[],2)); %************************************************************************** % STEP 2: Find a zero of dMat. If there are no starred zeros in its % column or row start the zero. Repeat for each zero %************************************************************************** zP = ~dMat; starZ = false(n); while any (zP(:)) [r,c]= find (zP,1); starZ(r,c)=true; zP(r,:)=false; zP(:,c)=false; end while 1 %************************************************************************** % STEP 3: Cover each column with a starred zero. If all the columns are % covered then the matching is maximum %************************************************************************** primeZ = false(n); coverColumn = any (starZ); if ~ any (~coverColumn) break end coverRow = false(n,1); while 1 %************************************************************************** % STEP 4: Find a noncovered zero and prime it. If there is no starred % zero in the row containing this primed zero, Go to Step 5. % Otherwise, cover this row and uncover the column containing % the starred zero. Continue in this manner until there are no % uncovered zeros left. Save the smallest uncovered value and % Go to Step 6. %************************************************************************** zP(:) = false; zP(~coverRow,~coverColumn) = ~dMat(~coverRow,~coverColumn); Step = 6; while any ( any (zP(~coverRow,~coverColumn))) [uZr,uZc] = find (zP,1); primeZ(uZr,uZc) = true; stz = starZ(uZr,:); if ~ any (stz) Step = 5; break ; end coverRow(uZr) = true; coverColumn(stz) = false; zP(uZr,:) = false; zP(~coverRow,stz) = ~dMat(~coverRow,stz); end if Step == 6 % ************************************************************************* % STEP 6: Add the minimum uncovered value to every element of each covered % row, and subtract it from every element of each uncovered column. % Return to Step 4 without altering any stars, primes, or covered lines. %************************************************************************** M=dMat(~coverRow,~coverColumn); minval= min ( min (M)); if minval==inf return end dMat(coverRow,coverColumn)=dMat(coverRow,coverColumn)+minval; dMat(~coverRow,~coverColumn)=M-minval; else break end end %************************************************************************** % STEP 5: % Construct a series of alternating primed and starred zeros as % follows: % Let Z0 represent the uncovered primed zero found in Step 4. % Let Z1 denote the starred zero in the column of Z0 (if any). % Let Z2 denote the primed zero in the row of Z1 (there will always % be one). Continue until the series terminates at a primed zero % that has no starred zero in its column. Unstar each starred % zero of the series, star each primed zero of the series, erase % all primes and uncover every line in the matrix. Return to Step 3. %************************************************************************** rowZ1 = starZ(:,uZc); starZ(uZr,uZc)=true; while any (rowZ1) starZ(rowZ1,uZc)=false; uZc = primeZ(rowZ1,:); uZr = rowZ1; rowZ1 = starZ(:,uZc); starZ(uZr,uZc)=true; end end % Cost of assignment assignment(validRow,validCol) = starZ(1:nRows,1:nCols); cost = sum (costMat(assignment)); end %% MATLAB实例:为匹配真实标签,对训练得到的标签进行调整 - 凯鲁嘎吉 - 博客园 % 来自:https://www.cnblogs.com/kailugaji/p/11771226.html function [ new_label ] = label_map( label, gnd ) %为匹配真实标签,对标签重新调整 K = length ( unique (gnd)); cost_mat = zeros (K,K); for i =1:K idx = find (label== i ); for j =1:K cost_mat( i , j ) = length ( find (gnd(idx)~= j )); end end [assignment, ~] = munkres(cost_mat); [assignedrows, ~]= find (assignment'); new_label = label; for i =1:K idx = find (label== i ); new_label(idx) = assignedrows( i ); end end %% MATLAB聚类有效性评价指标(外部 成对度量) - 凯鲁嘎吉 - 博客园 % 来自:https://www.cnblogs.com/kailugaji/p/11926253.html function result = Evaluate(real_label,pre_label) % This fucntion evaluates the performance of a classification model by % calculating the common performance measures: Accuracy, Sensitivity, % Specificity, Precision, Recall, F-Measure, G-mean. % Input: ACTUAL = Column matrix with actual class labels of the training % examples % PREDICTED = Column matrix with predicted class labels by the % classification model % Output: EVAL = Row matrix with all the performance measures % https://www.mathworks.com/matlabcentral/fileexchange/37758-performance-measures-for-classification idx = (real_label()==1); p = length (real_label(idx)); n = length (real_label(~idx)); N = p+n; tp = sum (real_label(idx)==pre_label(idx)); tn = sum (real_label(~idx)==pre_label(~idx)); fp = n-tn; fn = p-tp; tp_rate = tp/p; tn_rate = tn/n; accuracy = (tp+tn)/N; %准确度 sensitivity = tp_rate; %敏感性:真阳性率 specificity = tn_rate; %特异性:真阴性率 precision = tp/(tp+fp); %精度 recall = sensitivity; %召回率 f_measure = 2*((precision*recall)/(precision + recall)); %F-measure gmean = sqrt (tp_rate*tn_rate); Jaccard=tp/(tp+fn+fp); %Jaccard系数 result = [accuracy sensitivity specificity precision recall f_measure gmean Jaccard]; end |
结果:
未调整标签的准确度:0.294118 调整标签后的准确度:0.647059 |
完成。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 10年+ .NET Coder 心语 ── 封装的思维:从隐藏、稳定开始理解其本质意义
· 地球OL攻略 —— 某应届生求职总结
· 提示词工程——AI应用必不可少的技术
· Open-Sora 2.0 重磅开源!
· 字符编码:从基础到乱码解决