凯鲁嘎吉
用书写铭记日常,最迷人的不在远方

Python小练习:卷积层与反卷积层

作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/

使用Pytorch中的nn.Conv2d与nn.ConvTranspose2d函数来创建卷积层与反卷积层,构建卷积神经网络(CNN)编码器与解码器(仅含卷积层/反卷积层与激活函数)。

1. 卷积层代码

1.1 cnn_test.py

 1 # -*- coding: utf-8 -*-
 2 # Author:凯鲁嘎吉 Coral Gajic
 3 # https://www.cnblogs.com/kailugaji/
 4 # Python小练习:创建卷积层
 5 import torch
 6 import torch.nn as nn
 7 import numpy as np
 8 import os
 9 import imageio
10 from PIL import Image
11 import torchvision.transforms as transforms
12 import matplotlib.pyplot as plt
13 from pylab import *
14 from warnings import simplefilter
15 simplefilter(action="ignore",category=UserWarning)
16 
17 # 构建卷积神经网络(仅用到卷积层)
18 def build_CNN(input_size):
19     module_list = []
20     last_h = input_size[2]
21     last_w = input_size[3]
22     cnn_kernels = [[input_size[1], 256, 4],
23                    [256, 128, 3, 2, 1, 1],
24                    [128, 64, 3, 2, 1, 1],
25                    [64, 32, 3, 2, 1, 1],
26                    [32, 3, 5, 2, 2, 1]]
27     # 除了输入层,后面有5层,5个激活函数
28     # 6个参数的含义:
29     # 1. in_channels (int) – 输入图像中的通道数
30     # 2. out_channels (int) – 卷积产生的通道数即输出图片的通道数
31     # 3. kernel_size (int or tuple) – 卷积核的大小(可以是个数,也可以是元组)
32     # 4. stride (int or tuple, optional) — 卷积的步幅。 默认值:1
33     # 5. padding (int, tuple or str, optional) – 填充添加到输入的所有四个边。 默认值:0
34     # 6. dilation (int or tuple, optional) – 内核元素之间的间距。 默认值:1。
35     act_func = [nn.LeakyReLU(), nn.Tanh(), nn.ReLU(), nn.ELU(), nn.CELU()] # 激活函数
36     default = [None, None, None, 1, 0] # in_c, out_c, kernel, stride, pad
37     for i, ck in enumerate(cnn_kernels):
38         # i: 0, 1, 2, 3, 4 ...
39         ck = ck + default[len(ck):]
40         last_h = int((last_h + 2 * ck[4] - ck[2]) / ck[3] + 1) #(h+2*pad-k)/stride+1
41         last_w = int((last_w + 2 * ck[4] - ck[2]) / ck[3] + 1)
42         module_list.append(nn.Conv2d(*ck))
43         module_list.append(act_func[i])
44     output_shape = (cnn_kernels[-1][1], last_h, last_w)
45     return nn.Sequential(*module_list), output_shape
46 
47 # 使用方法
48 # 图像例子:
49 path = "./img" # 打开存放图像的文件夹
50 dirs = os.listdir(path) # ['1.jpg', '2.jpg', '3.jpg']
51 len_dir = len(dirs) # len_dir张图片
52 outs = []
53 count = 0
54 fig = plt.figure(figsize=(24, 6)) # 画布布局
55 for i in dirs:
56     image_pad = imageio.imread(os.path.join(path, i))  # i: 'xxx.jpg'
57     image_pad = Image.fromarray(image_pad).resize((600, 300))  # 重新调整图像尺寸
58     transf = transforms.ToTensor()  # 将原始数据形式(图像)转换成tensor
59     outs.append(transf(image_pad)) # tensor数据格式是torch(C,H,W)
60     plt.subplot(2, len_dir, count+1) # 2行,len_dir列,第count+1个子图
61     plt.axis('off')
62     plt.imshow(image_pad)
63     count += 1
64 outs= torch.tensor([np.array(item) for item in outs]) # 将list转换为tensor
65 model, output_shape = build_CNN(outs.shape)
66 # N, C, H, W = outs.shape # 样本个数5, 通道数3, 高300, 宽600
67 print('网络结构:\n', model)
68 print('单个样本的输出维度:', output_shape)
69 print('输入数据维度:', outs.shape)
70 y = model(outs) # 实例化
71 print('实际输出维度:', y.shape)
72 for i in range(outs.shape[0]): # 展示结果
73     toPIL = transforms.ToPILImage()
74     pic = toPIL(y[i])
75     plt.subplot(2, len_dir, int(i + 1 + outs.shape[0]))
76     plt.imshow(pic)
77     plt.axis('off')
78 plt.savefig('CNN_fig.png', bbox_inches='tight', pad_inches=0.0, dpi=500)
79 plt.show()
80 print('-------------------------------------------------')
81 # 随机数据例子:
82 input_size = [10, 3, 84, 84]
83 # 10张图片,3通道,每张图片长*宽为84*84
84 model, output_shape = build_CNN(input_size)
85 x = torch.randn(input_size)
86 print('输入数据维度:', x.shape)
87 y = model(x)
88 print('实际输出维度:', y.shape)

1.2 结果

D:\ProgramData\Anaconda3\python.exe "D:/Python code/2023.3 exercise/Neural Network/cnn_test.py"
网络结构:
 Sequential(
  (0): Conv2d(3, 256, kernel_size=(4, 4), stride=(1, 1))
  (1): LeakyReLU(negative_slope=0.01)
  (2): Conv2d(256, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
  (3): Tanh()
  (4): Conv2d(128, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
  (5): ReLU()
  (6): Conv2d(64, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
  (7): ELU(alpha=1.0)
  (8): Conv2d(32, 3, kernel_size=(5, 5), stride=(2, 2), padding=(2, 2))
  (9): CELU(alpha=1.0)
)
单个样本的输出维度: (3, 19, 38)
输入数据维度: torch.Size([5, 3, 300, 600])
实际输出维度: torch.Size([5, 3, 19, 38])
-------------------------------------------------
输入数据维度: torch.Size([10, 3, 84, 84])
实际输出维度: torch.Size([10, 3, 6, 6])

Process finished with exit code 0

2. 反卷积层代码

2.1 cnn_trans_test.py

 1 # -*- coding: utf-8 -*-
 2 # Author:凯鲁嘎吉 Coral Gajic
 3 # https://www.cnblogs.com/kailugaji/
 4 # Python小练习:创建反卷积层
 5 import torch
 6 import torch.nn as nn
 7 import numpy as np
 8 import os
 9 import imageio
10 from PIL import Image
11 import torchvision.transforms as transforms
12 import matplotlib.pyplot as plt
13 from pylab import *
14 from warnings import simplefilter
15 simplefilter(action="ignore",category=UserWarning)
16 
17 def build_CNN_trans(input_size):
18     module_list = []
19     last_h = input_size[2]
20     last_w = input_size[3]
21     cnn_trans_kernels = [[input_size[1], 256, 4],
22                    [256, 128, 3, 2, 1, 1],
23                    [128, 64, 3, 2, 1, 1],
24                    [64, 32, 3, 2, 1, 1],
25                    [32, 3, 5, 2, 2, 1]]
26     act_func = [nn.LeakyReLU(), nn.Tanh(), nn.ReLU(), nn.ELU(), nn.CELU()] # 激活函数
27     default = [None, None, None, 1, 0, 0] # in_c, out_c, kernel, stride, pad, outpad
28     for i, ck in enumerate(cnn_trans_kernels):
29         ck = ck + default[len(ck):]
30         last_h = (last_h - 1) * ck[3] - 2 * ck[4] + ck[2] + ck[5]
31         last_w = (last_w - 1) * ck[3] - 2 * ck[4] + ck[2] + ck[5]
32         module_list.append(nn.ConvTranspose2d(*ck))
33         # 用的是反卷积,不是卷积
34         module_list.append(act_func[i])
35     output_shape = (cnn_trans_kernels[-1][1], last_h, last_w)
36     return nn.Sequential(*module_list), output_shape
37 
38 # 使用方法
39 # 图像例子:
40 path = "./img" # 打开存放图像的文件夹
41 dirs = os.listdir(path) # ['1.jpg', '2.jpg', '3.jpg']
42 len_dir = len(dirs) # len_dir张图片
43 outs = []
44 count = 0
45 fig = plt.figure(figsize=(24, 6)) # 画布布局
46 for i in dirs:
47     image_pad = imageio.imread(os.path.join(path, i))  # i: 'xxx.jpg'
48     image_pad = Image.fromarray(image_pad).resize((38, 19))  # 重新调整图像尺寸
49     transf = transforms.ToTensor()  # 将原始数据形式(图像)转换成tensor
50     outs.append(transf(image_pad)) # tensor数据格式是torch(C,H,W)
51     plt.subplot(2, len_dir, count+1) # 2行,len_dir列,第count+1个子图
52     plt.axis('off')
53     plt.imshow(image_pad)
54     count += 1
55 outs= torch.tensor([np.array(item) for item in outs]) # 将list转换为tensor
56 model, output_shape = build_CNN_trans(outs.shape)
57 print('网络结构:\n', model)
58 print('单个样本的输出维度:', output_shape)
59 print('输入数据维度:', outs.shape)
60 y = model(outs) # 实例化
61 print('实际输出维度:', y.shape)
62 for i in range(outs.shape[0]): # 展示结果
63     toPIL = transforms.ToPILImage()
64     pic = toPIL(y[i])
65     plt.subplot(2, len_dir, int(i + 1 + outs.shape[0]))
66     plt.imshow(pic)
67     plt.axis('off')
68 plt.savefig('CNN_trans_fig.png', bbox_inches='tight', pad_inches=0.0, dpi=500)
69 plt.show()
70 print('-------------------------------------------------')
71 # 随机数据例子:
72 input_size = [10, 3, 6, 6]
73 model, output_shape = build_CNN_trans(input_size)
74 x = torch.randn(input_size)
75 print('输入数据维度:', x.shape)
76 y = model(x)
77 print('实际输出维度:', y.shape)

2.2 结果

D:\ProgramData\Anaconda3\python.exe "D:/Python code/2023.3 exercise/Neural Network/cnn_trans_test.py"
网络结构:
 Sequential(
  (0): ConvTranspose2d(3, 256, kernel_size=(4, 4), stride=(1, 1))
  (1): LeakyReLU(negative_slope=0.01)
  (2): ConvTranspose2d(256, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), output_padding=(1, 1))
  (3): Tanh()
  (4): ConvTranspose2d(128, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), output_padding=(1, 1))
  (5): ReLU()
  (6): ConvTranspose2d(64, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), output_padding=(1, 1))
  (7): ELU(alpha=1.0)
  (8): ConvTranspose2d(32, 3, kernel_size=(5, 5), stride=(2, 2), padding=(2, 2), output_padding=(1, 1))
  (9): CELU(alpha=1.0)
)
单个样本的输出维度: (3, 352, 656)
输入数据维度: torch.Size([5, 3, 19, 38])
实际输出维度: torch.Size([5, 3, 352, 656])
-------------------------------------------------
输入数据维度: torch.Size([10, 3, 6, 6])
实际输出维度: torch.Size([10, 3, 144, 144])

Process finished with exit code 0

补充:卷积神经网络的调用:

 1 # -*- coding: utf-8 -*-
 2 # Author:凯鲁嘎吉 Coral Gajic
 3 # https://www.cnblogs.com/kailugaji/
 4 # Python小练习:创建卷积层
 5 import torch
 6 import torch.nn as nn
 7 import numpy as np
 8 
 9 def build_cnn(
10         input_shape,
11         cnn_kernels
12 ):
13     act_func = [nn.ReLU(), nn.ReLU(), nn.ReLU(), nn.ReLU()]
14     module_list = []
15     last_h = input_shape[1]
16     last_w = input_shape[2]
17     default = [None, None, None, 1, 0]
18     for i, ck in enumerate(cnn_kernels):
19         ck = ck + default[len(ck):]
20         last_h = int((last_h + 2 * ck[4] - ck[2]) / ck[3] + 1)  # (h+2*pad-k)/stride+1
21         last_w = int((last_w + 2 * ck[4] - ck[2]) / ck[3] + 1)
22         module_list.append(nn.Conv2d(*ck))
23         module_list.append(act_func[i])
24     output_shape = (cnn_kernels[-1][1], last_h, last_w)
25     return nn.Sequential(*module_list), output_shape
26 
27 class CNN(nn.Module):
28     def __init__(
29             self,
30             input_shape,
31             output_size=None,
32             cnn_kernels=[[-1, 32, 3, 2], [32, 32, 3, 1], [32, 32, 3, 1], [32, 32, 3, 1]]
33     ):
34         super().__init__()
35         self.cnn_kernels = cnn_kernels
36         cnn_kernels[0][0] = input_shape[0]
37         self.num_layers = len(cnn_kernels)
38         self.input_shape = input_shape
39         self.module, self.latent_shape = build_cnn(
40             input_shape,
41             cnn_kernels
42         )
43         self.latent_size = np.prod(self.latent_shape)
44         if output_size is not None:
45             assert self.latent_size == output_size, (self.latent_size, output_size)
46         else:
47             output_size = self.latent_size
48         self.output_size = output_size
49         self.output_shape = (output_size,)
50 
51     def process(self, obs):
52         h = self.forward(obs)
53         h = h.view(h.size(0), -1)
54         return h
55 
56     def forward(self, obs):
57         obs = obs / 255.0
58         h = self.module(obs)
59         return h
60 
61     def process_feature_map(self, obs):
62         h = self.forward(obs)
63         return h
64 
65     def process_traj(self, obs):
66         B, L, _, _, _ = obs.shape
67         obs = obs.view(B * L, *self.input_shape)
68         h = self.forward(obs)
69         h = h.view(B, L, self.output_size)
70         return h
71 
72 # -------------------------------
73 data = torch.rand([10, 3, 84, 84])
74 # 10个样本,每个样本的大小都是(3, 84, 84)的
75 cnn = CNN([3, 84, 84])
76 # 输出维度[32, 35, 35]
77 # 32*35*35 = 39200
78 print('CNN模型结构:\n', cnn.module)
79 print('CNN输入尺寸:', cnn.input_shape)
80 print('CNN输出尺寸:', cnn.latent_shape)
81 data_process = cnn.process(data)
82 print('process:', data_process.shape)
83 # -------------------------------
84 data_forward = cnn.forward(data)
85 print('forward:', data_forward.shape)
86 # -------------------------------
87 data_process_feature_map = cnn.process_feature_map(data)
88 print('process_feature_map:', data_process_feature_map.shape)
89 # ----------------------------------------------------------------
90 data = torch.rand([10, 6, 3, 84, 84])
91 data_process_traj = cnn.process_traj(data)
92 print('process_traj:', data_process_traj.shape)

结果:

D:\ProgramData\Anaconda3\python.exe "D:/Python code/2023.3 exercise/Neural Network/CNN_class_test.py"
CNN模型结构:
 Sequential(
  (0): Conv2d(3, 32, kernel_size=(3, 3), stride=(2, 2))
  (1): ReLU()
  (2): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1))
  (3): ReLU()
  (4): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1))
  (5): ReLU()
  (6): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1))
  (7): ReLU()
)
CNN输入尺寸: [3, 84, 84]
CNN输出尺寸: (32, 35, 35)
process: torch.Size([10, 39200])
forward: torch.Size([10, 32, 35, 35])
process_feature_map: torch.Size([10, 32, 35, 35])
process_traj: torch.Size([10, 6, 39200])

Process finished with exit code 0

完成。

posted on 2023-04-07 10:05  凯鲁嘎吉  阅读(222)  评论(0编辑  收藏  举报