凯鲁嘎吉
用书写铭记日常,最迷人的不在远方

Python小练习:激活函数

作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/

本文介绍几种常见的激活函数,并用Python来实现,包括:Sigmoid、tanh、ReLU、LeakyReLU、ELU、Swish、softmax、softplus。

1. 常见激活函数定义

2. activation_function_test1.py

 1 # -*- coding: utf-8 -*-
 2 # Author:凯鲁嘎吉 Coral Gajic
 3 # https://www.cnblogs.com/kailugaji/
 4 # Python小练习:激活函数
 5 # 用Python实现常见的激活函数:'sigmoid', 'tanh', 'relu', 'leakyrelu', 'elu', 'swish', 'softmax','softplus'
 6 '''
 7 部分参考:
 8     https://zhuanlan.zhihu.com/p/397494815
 9 '''
10 import numpy as np
11 import torch
12 import torch.nn.functional as F
13 import matplotlib.pyplot as plt
14 plt.rc('font',family='Times New Roman')
15 
16 # 激活函数
17 def activation_function(index, x, gamma = None, dim = -1):
18     y = torch.empty([]) # 自己手动写的激活函数
19     z = torch.empty([]) # 调用Pytorch内置的激活函数
20     if index == 'sigmoid':
21         y = 1 / (1 + torch.exp(-x))
22         z = torch.sigmoid(x)
23     elif index == 'tanh':
24         y = (torch.exp(x) - torch.exp(-x)) / (torch.exp(x) + torch.exp(-x))
25         z = torch.tanh(x)
26     elif index == 'relu':
27         y = np.where(x >= 0, x, 0)
28         y = torch.tensor(y)
29         z = F.relu(x)
30     elif index == 'leakyrelu':
31         y = np.where(x > 0, x, x * gamma)
32         y = torch.tensor(y)
33         z = F.leaky_relu(x, gamma)
34     elif index == 'elu':
35         y = np.where(x > 0, x, gamma * (np.exp(x) - 1))
36         y = torch.tensor(y)
37         z = F.elu(x,gamma)
38     elif index == 'swish':
39         y = x * (1 / (1 + torch.exp(-x)))
40         z = x * torch.sigmoid(x)
41     elif index == 'softmax':
42         y = torch.exp(x) / torch.exp(x).sum(dim = dim, keepdim = True)
43         z = F.softmax(x, dim = dim)
44     elif index == 'softplus':
45         y = torch.log(1 + torch.exp(x))
46         z = F.softplus(x)
47     return y, z
48 
49 torch.manual_seed(1)
50 x = torch.randn(2, 3) # 原始数据
51 print('原始数据:\n', x)
52 # activation_function()参数设置
53 index = ['sigmoid', 'tanh', 'relu', 'leakyrelu', 'elu', 'swish', 'softmax', 'softplus']
54 gamma = 0.1 # 超参数
55 num = 4 # 小数点后保留几位
56 for idx in index:
57     y, z = activation_function(idx, x, gamma)
58     print('------------------------------------------')
59     print('激活函数为:', idx)
60     print('自己写的函数:\n', np.around(y, num))
61     print('调用内置函数:\n', np.around(z, num))
62 # --------------------画图------------------------
63 # 手动设置横纵坐标范围
64 plt.xlim([-4, 4])
65 plt.ylim([-1, 4])
66 x = np.linspace(-4, 4, 100, endpoint=True)
67 color = ['green', 'red', 'yellow', 'cyan', 'orangered', 'dodgerblue', 'black', 'pink']
68 ls = ['-', '-', ':', ':', ':', '-', '-', '-']
69 for i in range(len(index)):
70     _, z = activation_function(index[i], torch.tensor(x), gamma)
71     if color[i] == 'yellow':
72         plt.plot(x, z.numpy(), color=color[i], ls=ls[i], lw = 3, label=index[i])
73     else:
74         plt.plot(x, z.numpy(), color=color[i], ls=ls[i], label=index[i])
75 # 添加 y = 1,x = 0 基准线
76 plt.plot([x.min(), x.max()], [1, 1], color = 'gray', ls = '--', alpha = 0.3)
77 plt.plot([0, 0], [-1, 4], color = 'gray', ls = '--', alpha = 0.3)
78 # 添加x轴和y轴标签
79 plt.xlabel('x')
80 plt.ylabel('f(x)')
81 plt.legend(ncol = 1, fontsize='small', facecolor='lavenderblush', edgecolor='black')
82 plt.tight_layout()
83 plt.savefig('Activation Functions.png', bbox_inches='tight', dpi=500)
84 plt.show()

3. 结果

D:\ProgramData\Anaconda3\python.exe "D:/Python code/2023.3 exercise/Activation Functions/activation_function_test1.py"
原始数据:
 tensor([[ 0.6614,  0.2669,  0.0617],
        [ 0.6213, -0.4519, -0.1661]])
------------------------------------------
激活函数为: sigmoid
自己写的函数:
 tensor([[0.6596, 0.5663, 0.5154],
        [0.6505, 0.3889, 0.4586]])
调用内置函数:
 tensor([[0.6596, 0.5663, 0.5154],
        [0.6505, 0.3889, 0.4586]])
------------------------------------------
激活函数为: tanh
自己写的函数:
 tensor([[ 0.5793,  0.2608,  0.0616],
        [ 0.5520, -0.4235, -0.1646]])
调用内置函数:
 tensor([[ 0.5793,  0.2608,  0.0616],
        [ 0.5520, -0.4235, -0.1646]])
------------------------------------------
激活函数为: relu
自己写的函数:
 tensor([[0.6614, 0.2669, 0.0617],
        [0.6213, 0.0000, 0.0000]])
调用内置函数:
 tensor([[0.6614, 0.2669, 0.0617],
        [0.6213, 0.0000, 0.0000]])
------------------------------------------
激活函数为: leakyrelu
自己写的函数:
 tensor([[ 0.6614,  0.2669,  0.0617],
        [ 0.6213, -0.0452, -0.0166]])
调用内置函数:
 tensor([[ 0.6614,  0.2669,  0.0617],
        [ 0.6213, -0.0452, -0.0166]])
------------------------------------------
激活函数为: elu
自己写的函数:
 tensor([[ 0.6614,  0.2669,  0.0617],
        [ 0.6213, -0.0364, -0.0153]])
调用内置函数:
 tensor([[ 0.6614,  0.2669,  0.0617],
        [ 0.6213, -0.0364, -0.0153]])
------------------------------------------
激活函数为: swish
自己写的函数:
 tensor([[ 0.4362,  0.1512,  0.0318],
        [ 0.4042, -0.1757, -0.0762]])
调用内置函数:
 tensor([[ 0.4362,  0.1512,  0.0318],
        [ 0.4042, -0.1757, -0.0762]])
------------------------------------------
激活函数为: softmax
自己写的函数:
 tensor([[0.4498, 0.3032, 0.2470],
        [0.5565, 0.1903, 0.2532]])
调用内置函数:
 tensor([[0.4498, 0.3032, 0.2470],
        [0.5565, 0.1903, 0.2532]])
------------------------------------------
激活函数为: softplus
自己写的函数:
 tensor([[1.0775, 0.8355, 0.7245],
        [1.0513, 0.4925, 0.6135]])
调用内置函数:
 tensor([[1.0775, 0.8355, 0.7245],
        [1.0513, 0.4925, 0.6135]])

Process finished with exit code 0

可以看到,自己写的激活函数与内置的结果一致。

posted on 2023-03-27 20:35  凯鲁嘎吉  阅读(213)  评论(0编辑  收藏  举报