凯鲁嘎吉
用书写铭记日常,最迷人的不在远方
 

TensorFlow加载MNIST数据集

 

作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/

所用版本:python3.5.2,tensorflow1.8.0,tensorboard1.8.0

 

首先,在与Python代码相同路径下新建一个文件夹“MNIST_data”。
然后从MNIST数据集官网上http://yann.lecun.com/exdb/mnist/ 下载以下四个文件到“MNIST_data”文件夹中。

注意,不要解压,文件夹只保留这四个文件。
train-images-idx3-ubyte.gz: 训练集图片,包含55000张训练图片与5000张验证图片。
train-labels-idx1-ubyte.gz: 训练集图片对应的数字标签。
t10k-images-idx3-ubyte.gz: 测试集图片,包含10000张测试图片。
t10k-labels-idx1-ubyte.gz: 测试集图片对应的数字标签。
然后运行下面代码即可加载MNIST数据集。

In [1]:
# 导入TensorFlow中input_data.py文件
In [2]:
from tensorflow.examples.tutorials.mnist import input_data
In [3]:
# 从MNIST_data数据集中读取MNIST数据
In [4]:
mnist = input_data.read_data_sets('MNIST_data',one_hot=True) 
In [5]:
# 进一步分析MNIST内容
In [6]:
# 加载数据
train_X = mnist.train.images                #训练集样本
validation_X = mnist.validation.images      #验证集样本
test_X = mnist.test.images                  #测试集样本
# 加载标签
train_Y = mnist.train.labels                #训练集标签
validation_Y = mnist.validation.labels      #验证集标签
test_Y = mnist.test.labels                  #测试集标签
In [7]:
print('训练集样本的大小:', train_X.shape)
print('训练集标签的大小:', train_Y.shape)
 
训练集样本的大小: (55000, 784)
训练集标签的大小: (55000, 10)
In [8]:
print('测试集样本的大小:', test_X.shape)
print('测试集标签的大小:', test_Y.shape)
 
测试集样本的大小: (10000, 784)
测试集标签的大小: (10000, 10)
In [9]:
print('验证集样本的大小:', validation_X.shape)
print('验证集标签的大小:', validation_Y.shape)
 
验证集样本的大小: (5000, 784)
验证集标签的大小: (5000, 10)
In [10]:
import matplotlib.pyplot as plt
In [11]:
# 显示出一张RGB图片看看
im = train_X[1]
im = im.reshape(-1, 28)
plt.imshow(im) # RGB图像
plt.show()
 
In [12]:
# 显示出一张灰度图片看看
im = train_X[1]
im = im.reshape(-1, 28)
plt.imshow(im,cmap='Greys')
plt.show()
 
In [13]:
#可视化样本,下面是输出了训练集中前20个样本
fig, ax = plt.subplots(nrows=4,ncols=5,sharex='all',sharey='all')
ax = ax.flatten()
for i in range(20):
    img = train_X[i].reshape(28, 28)
    ax[i].imshow(img,cmap='Greys')
ax[0].set_xticks([])
ax[0].set_yticks([])
plt.tight_layout()
plt.show()
 
In [14]:
#查看数据,例如训练集中第一个样本的内容和标签
print(train_X[0])       #是一个包含784个元素且值在[0,1]之间的向量
print(train_Y[0])
 
[0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.3803922  0.37647063 0.3019608
 0.46274513 0.2392157  0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.3529412
 0.5411765  0.9215687  0.9215687  0.9215687  0.9215687  0.9215687
 0.9215687  0.9843138  0.9843138  0.9725491  0.9960785  0.9607844
 0.9215687  0.74509805 0.08235294 0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.54901963 0.9843138  0.9960785  0.9960785
 0.9960785  0.9960785  0.9960785  0.9960785  0.9960785  0.9960785
 0.9960785  0.9960785  0.9960785  0.9960785  0.9960785  0.9960785
 0.7411765  0.09019608 0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.8862746  0.9960785  0.81568635 0.7803922  0.7803922  0.7803922
 0.7803922  0.54509807 0.2392157  0.2392157  0.2392157  0.2392157
 0.2392157  0.5019608  0.8705883  0.9960785  0.9960785  0.7411765
 0.08235294 0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.14901961 0.32156864
 0.0509804  0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.13333334 0.8352942  0.9960785  0.9960785  0.45098042 0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.32941177
 0.9960785  0.9960785  0.9176471  0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.32941177 0.9960785  0.9960785
 0.9176471  0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.4156863  0.6156863  0.9960785  0.9960785  0.95294124 0.20000002
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.09803922
 0.45882356 0.8941177  0.8941177  0.8941177  0.9921569  0.9960785
 0.9960785  0.9960785  0.9960785  0.94117653 0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.26666668 0.4666667  0.86274517 0.9960785  0.9960785
 0.9960785  0.9960785  0.9960785  0.9960785  0.9960785  0.9960785
 0.9960785  0.5568628  0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.14509805 0.73333335 0.9921569
 0.9960785  0.9960785  0.9960785  0.8745099  0.8078432  0.8078432
 0.29411766 0.26666668 0.8431373  0.9960785  0.9960785  0.45882356
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.4431373  0.8588236  0.9960785  0.9490197  0.89019614 0.45098042
 0.34901962 0.12156864 0.         0.         0.         0.
 0.7843138  0.9960785  0.9450981  0.16078432 0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.6627451  0.9960785
 0.6901961  0.24313727 0.         0.         0.         0.
 0.         0.         0.         0.18823531 0.9058824  0.9960785
 0.9176471  0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.07058824 0.48627454 0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.32941177 0.9960785  0.9960785  0.6509804  0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.54509807
 0.9960785  0.9333334  0.22352943 0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.8235295  0.9803922  0.9960785  0.65882355
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.9490197  0.9960785  0.93725497 0.22352943 0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.34901962 0.9843138  0.9450981
 0.3372549  0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.01960784 0.8078432  0.96470594 0.6156863  0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.01568628 0.45882356
 0.27058825 0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.        ]
[0. 0. 0. 0. 0. 0. 0. 1. 0. 0.]
posted on 2021-08-31 16:23  凯鲁嘎吉  阅读(1255)  评论(0编辑  收藏  举报