转载请注明出处:優YoU  http://user.qzone.qq.com/289065406/blog/1301543725

大致题意:

给定一个矩形网格的长m和高n,其中m和n都是unsigned int32类型,一格代表一个单位,就是一步,求从左下角到右上角有多少种走法,每步只能向上或者向右走

 

解题思路:

非常水的中学数学题,用组合做

先简单建立一个数学模型:

只要给定了长m和高n,那么要从左下角走到右上角,不管怎么走,一定要往右走m次,往上走n次

例如给定 m=5,n=4

那么可以  上上上上上右右右右

又可以    上右上右上右上右上

等等。。。

关键是“上”和“右”的先后问题,就是组合问题了

那么数学模型就是

从n+m个位置,选择n个位放“上” (那么剩下m个位一定是“右”)

 

处理阶乘有三种办法:

(1)       传统意义上的直接递归,n的规模最多到20+,太小了,在本题不适用,而且非常慢

(2)       稍快一点的算法,就是利用log()化乘为加,n的规模虽然扩展到1000+,但是由于要用三重循环,一旦n规模变得更大,耗时就会非常之严重,时间复杂度达到O(n*m*(n-m)),本题规定了n,m用unsigned int32类型,就是说n,m的规模达到了21E以上,铁定TLE的。而且就算抛开时间不算,还存在一个致命的问题,就是精度损失随着n的增加会变得非常严重。

因为n有多大,就要进行n次对数运算,n规模一旦过大,就会丢失得非常严重了。所以这种方法是绝对不可取的,因为中途的精度丢失不是简单的四舍五入可以挽回的。

(3)       拆分阶乘,逐项相除,再乘以前面所有项之积。这种方法用一个循环就OK了,时间复杂度只有O(n-m),非常可观。

 

 下面我根据程序详细说说算法(3):

       double cnm=1.0;

       while(b>0)

              cnm*=(double)(a- -)/(double)(b- -);

 

这是我写的函数原型,计算的是 aCb

 

这种算法巧妙地利用了分子分母的关系,而不是把公示中的3个阶乘单独处理。

例如当 a=5,b=2时

 

由于用了 double去计算组合数,那么最后要转化为 无符号整型 时就要处理精度问题,有两种方法:四舍五入+强制类型转换  或者 用 setprecision()函数

详细看我的两个程序

/*强制类型转换输出*/  
02.  
03.//Memory Time   
04.//220K   0MS   
05.  
06.#include<iostream>  
07.#include<math.h>  
08.using namespace std;  
09.  
10./*Compute (n+m)C min{n,m}*/  
11.  
12.unsigned comp(unsigned n,unsigned m)  
13.{  
14.    unsigned a=m+n;  
15.    unsigned b=(m<n?m:n);  
16.    double cnm=1.0;  
17.    while(b>0)  
18.        cnm*=(double)(a--)/(double)(b--);  
19.  
20.    cnm+=0.5;      //double转unsigned会强制截断小数,必须先四舍五入  
21.    return (unsigned)cnm;  
22.}  
23.  
24.int main(void)  
25.{  
26.    unsigned m,n;  
27.    while(true)  
28.    {  
29.        cin>>m>>n;  
30.        if(!m && !n)//承认这题的猥琐吧!竟然有其中一边为0的矩阵,一定要&&,用||会WA  
31.            break;  
32.  
33.        cout<<comp(n,m)<<endl;  
34.    }  
35.    return 0;  
36.}  
/*自定义精度输出*/  
02.  
03.//Memory Time   
04.//220K   0MS   
05.  
06.#include<iostream>  
07.#include<math.h>  
08.#include<iomanip>  
09.using namespace std;  
10.  
11./*Compute (n+m)C min{n,m}*/  
12.  
13.double comp(unsigned n,unsigned m)  
14.{  
15.    unsigned a=m+n;  
16.    unsigned b=(m<n?m:n);  
17.    double cnm=1.0;  
18.    while(b>0)  
19.        cnm*=(double)(a--)/(double)(b--);  
20.  
21.    return cnm;  
22.}  
23.  
24.int main(void)  
25.{  
26.    unsigned m,n;  
27.    while(true)  
28.    {  
29.        cin>>m>>n;  
30.        if(!m && !n)  
31.            break;  
32.  
33.        cout<<fixed<<setprecision(0)<<comp(n,m)<<endl;    
34.        //fixed是为了固定小数位数  
35.        //setprecision()函数是会自动四舍五入的,所以不用像强制类型转换那样预先+0.5  
36.    }  
37.    return 0;  
38.} 

 

posted on 2014-08-13 16:33  jlnu_wanglei  阅读(230)  评论(0编辑  收藏  举报