摘要: #include #include #include #include using namespace std;int a[55][10005];int b[55];int N, M, K;bool b_search(int key, int arr[], int size){ int l = 0; int r = size - 1; while ( l > 1; if ( arr[mid] == key ) return true; else if ( key < arr[mid] ) r = mid ... 阅读全文
posted @ 2013-09-22 22:24 Sinker 阅读(212) 评论(0) 推荐(1) 编辑
摘要: 空间:对定义于其上的运算封闭。某类数学问题->解是否具备线性性质->若具备,解空间形成一个线性空间->find basis && 定义解结构的正交性 && determine the dimension->span the basis to get complete solutions->问题解决。两类典型的线性空间:线性方程组引出的向量空间,线性微分方程引出的函数空间。 阅读全文
posted @ 2013-09-19 20:13 Sinker 阅读(128) 评论(0) 推荐(0) 编辑
摘要: Greg Turk, August 1997"What math should I learn in order to study computer graphics?" This is perhaps the most common general question that students ask me about computer graphics. The answer depends on how deeply you wish to go into the field. If you wish to begin to use off-the-shelf gra 阅读全文
posted @ 2013-09-18 19:26 Sinker 阅读(182) 评论(0) 推荐(0) 编辑
摘要: #include #include #include #include #include using namespace std;map p;map q;int a, b;char n[1000];void init(){ for (int i = 0; i 0 ) toB( d / b ); printf("%c", q[d % b]);}int main(){ // freopen("1.txt", "r", stdin); init(); while ( scanf("%d%s%d", &a, n, 阅读全文
posted @ 2013-09-17 20:51 Sinker 阅读(200) 评论(0) 推荐(0) 编辑
摘要: #include #include #include #include using namespace std;const int MAXN = 101;typedef struct { int c[3]; int cnt;}state;queue q;int s[3];bool vis[MAXN][MAXN][MAXN];int dir[6][2] = { {0,1}, {1,0}, {0,2}, {2,0}, {1,2}, {2,1} };bool ok(state x){ ... 阅读全文
posted @ 2013-09-17 20:17 Sinker 阅读(223) 评论(0) 推荐(0) 编辑
摘要: “CEOs are supposed to have class. I can see that isn't an opinion you hold.” -- Steve Jobs to Michael Dell (1997) We hold these truths to be self-evident, that all students/postdocs are entitled to a good education and quality training in research skills.Elegance is the top priority in our group 阅读全文
posted @ 2013-09-09 14:58 Sinker 阅读(213) 评论(0) 推荐(0) 编辑
摘要: C++cmakebulletqt UILaTex 阅读全文
posted @ 2013-08-13 21:19 Sinker 阅读(112) 评论(0) 推荐(0) 编辑
摘要: 阅读全文
posted @ 2013-08-01 18:50 Sinker 阅读(183) 评论(0) 推荐(0) 编辑
摘要: 设f是R上的连续函数,且f(f(x))=x,证明:存在f(ξ)=ξ.证明:令g(x)=x-f(x),显然g(x)是R上的连续函数.又有g(f(x))=f(x)-f(f(x))=f(x)-x, 若f(x)=x恒成立,结论显然;否则存在η使得f(η)≠η,于是g(η)g(f(η))<0,由零点存在定理 存在ξ∈(min{η,f(η)},max{η,f(η)}),使得g(ξ)=0,即f(ξ)=ξ. 阅读全文
posted @ 2013-07-07 00:25 Sinker 阅读(173) 评论(0) 推荐(0) 编辑
摘要: 一定要安排时间强化自己的分析和代数。分析准备从Terence Tao的《Analysis》开始,之后再进行实分析的学习。代数先巩固一下线性代数吧,补上多项式理论的部分,然后看能不能进入抽象代数的领域。 阅读全文
posted @ 2013-07-03 01:56 Sinker 阅读(223) 评论(0) 推荐(0) 编辑