Kafka是一个高性能,高容错,多副本,可复制的分布式消息系统。在整个系统中,涉及到多处选举机制,被不少人搞混,这里总结一下,本篇文章大概会从三个方面来讲解。

  • 控制器(Broker)选主
  • 分区多副本选主
  • 消费组选主

1、控制器(Broker)选举

  所谓控制器就是一个Borker,在一个kafka集群中,有多个broker节点,但是它们之间需要选举出一个leader,其他的broker充当follower角色。集群中第一个启动的broker会通过在zookeeper中创建临时节点/controller来让自己成为控制器,其他broker启动时也会在zookeeper中创建临时节点,但是发现节点已经存在,所以它们会收到一个异常,意识到控制器已经存在,那么就会在zookeeper中创建watch对象,便于它们收到控制器变更的通知。

  那么如果控制器由于网络原因与zookeeper断开连接或者异常退出,那么其他broker通过watch收到控制器变更的通知,就会去尝试创建临时节点/controller,如果有一个broker创建成功,那么其他broker就会收到创建异常通知,也就意味着集群中已经有了控制器,其他broker只需创建watch对象即可。

  如果集群中有一个broker发生异常退出了,那么控制器就会检查这个broker是否有分区的副本leader,如果有那么这个分区就需要一个新的leader,此时控制器就会去遍历其他副本,决定哪一个成为新的leader,同时更新分区的ISR集合。

  如果有一个broker加入集群中,那么控制器就会通过Broker ID去判断新加入的broker中是否含有现有分区的副本,如果有,就会从分区副本中去同步数据。

  集群中每选举一次控制器,就会通过zookeeper创建一个controller epoch,每一个选举都会创建一个更大,包含最新信息的epoch,如果有broker收到比这个epoch旧的数据,就会忽略它们,kafka也通过这个epoch来防止集群产生“脑裂”。

2、分区副本选举机制

在kafka的集群中,会存在着多个主题topic,在每一个topic中,又被划分为多个partition,为了防止数据不丢失,每一个partition又有多个副本,在整个集群中,总共有三种副本角色:

  • leader副本:也就是leader主副本,每个分区都有一个leader副本,为了保证数据一致性,所有的生产者与消费者的请求都会经过该副本来处理。
  • follower副本:除了首领副本外的其他所有副本都是follower副本,follower副本不处理来自客户端的任何请求,只负责从leader副本同步数据,保证与首领保持一致。如果leader副本发生崩溃,就会从这其中选举出一个leader。
  • 优先副本:创建分区时指定的优先leader。如果不指定,则为分区的第一个副本。

  follower需要从leader中同步数据,但是由于网络或者其他原因,导致数据阻塞,出现不一致的情况,为了避免这种情况,follower会向leader发送请求信息,这些请求信息中包含了follower需要数据的偏移量offset,而且这些offset是有序的。

  如果有follower向leader发送了请求1,接着发送请求2,请求3,那么再发送请求4,这时就意味着follower已经同步了前三条数据,否则不会发送请求4。leader通过跟踪 每一个follower的offset来判断它们的复制进度。

  默认的,如果follower与leader之间超过10s内没有发送请求,或者说没有收到请求数据,此时该follower就会被认为“不同步副本”。而持续请求的副本就是“同步副本”,当leader发生故障时,只有“同步副本”才可以被选举为leader。其中的请求超时时间可以通过参数replica.lag.time.max.ms参数来配置。

  我们希望每个分区的leader可以分布到不同的broker中,尽可能的达到负载均衡,所以会有一个优先leader,如果我们设置参数auto.leader.rebalance.enable为true,那么它会检查优先leader是否是真正的leader,如果不是,则会触发选举,让优先leader成为leader。

3、消费组选主

  在kafka的消费端,会有一个消费者协调器以及消费组,组协调器GroupCoordinator需要为消费组内的消费者选举出一个消费组的leader,那么如何选举的呢?

如果消费组内还没有leader,那么第一个加入消费组的消费者即为消费组的leader,如果某一个时刻leader消费者由于某些原因退出了消费组,那么就会重新选举leader,如何选举?

private val members = new mutable.HashMap[String, MemberMetadata]
leaderId = members.keys.headOption

  上面代码是kafka源码中的部分代码,member是一个hashmap的数据结构,key为消费者的member_id,value是元数据信息,那么它会将leaderId选举为Hashmap中的第一个键值对,它和随机基本没啥区别。

posted on 2020-10-24 19:21  kosamino  阅读(5724)  评论(0编辑  收藏  举报