冷烟花
哎呀哎呀哎呀我的妈~蜗牛背着那重重的壳呀,一步一步地往上爬~

1. Platform驱动在ASoC中的作用

前面几章内容已经说过,ASoC被分为Machine,Platform和Codec三大部件,Platform驱动的主要作用是完成音频数据的管理,最终通过CPU的数字音频接口(DAI)把音频数据传送给Codec进行处理,最终由Codec输出驱动耳机或者是喇叭的音信信号.在具体实现上,ASoC有把Platform驱动分为两个部分:snd_soc_platform_driver和snd_soc_dai_driver.其中,platform_driver负责管理音频数据,把音频数据通过dma或其他操作传送至cpu dai中,dai_driver则主要完成cpu一侧的dai的参数配置,同时也会通过一定的途径把必要的dma等参数与snd_soc_platform_driver进行交互.

2. snd_soc_platform_driver的注册

通常,ASoC把snd_soc_platform_driver注册为一个系统的platform_driver,不要被这两个相像的术语所迷惑,前者只是针对ASoC子系统的,后者是来自Linux的设备驱动模型.我们要做的就是:、

  1. 定义一个snd_soc_platform_driver结构的实例;
  2. 在platform_driver的probe回调中利用ASoC的API:snd_soc_register_platform()注册上面定义的实例;
  3. 实现snd_soc_platform_driver中的各个回调函数;

以kernel3.3中的/sound/soc/samsung/dma.c为例

 1 static struct snd_soc_platform_driver samsung_asoc_platform = {
 2     .ops        = &dma_ops,
 3     .pcm_new    = dma_new,
 4     .pcm_free    = dma_free_dma_buffers,
 5 };
 6 
 7 static int __devinit samsung_asoc_platform_probe(struct platform_device *pdev)
 8 {
 9     return snd_soc_register_platform(&pdev->dev, &samsung_asoc_platform);
10 }
11 
12 static int __devexit samsung_asoc_platform_remove(struct platform_device *pdev)
13 {
14     snd_soc_unregister_platform(&pdev->dev);
15     return 0;
16 }
17 
18 static struct platform_driver asoc_dma_driver = {
19     .driver = {
20         .name = "samsung-audio",
21         .owner = THIS_MODULE,
22     },
23 
24     .probe = samsung_asoc_platform_probe,
25     .remove = __devexit_p(samsung_asoc_platform_remove),
26 };
27 
28 module_platform_driver(asoc_dma_driver);

snd_soc_register_platform() 该函数用于注册一个snd_soc_platform,只有注册以后,它才可以被Machine驱动使用.它的代码已经清晰地表达了它的实现过程

  1. 为snd_soc_platform实例申请内存;
  2. 从platform_device中获得它的名字,用于Machine驱动的匹配工作;
  3. 初始化snd_soc_platform的字段;
  4. 把snd_soc_platform实例连接到全局链表platform_list中;
  5. 调用snd_soc_instantiate_cards,触发声卡的machine、platform、codec、dai等的匹配工作;

3. cpu的snd_soc_dai driver驱动的注册

dai驱动通常对应cpu的一个或几个I2S/PCM接口,与snd_soc_platform一样,dai驱动也是实现为一个platform driver,实现一个dai驱动大致可以分为以下几个步骤

  1. 定义一个snd_soc_dai_driver结构的实例;
  2. 在对应的platform_driver中的probe回调中通过API:snd_soc_register_dai或者snd_soc_register_dais,注册snd_soc_dai实例;
  3. 实现snd_soc_dai_driver结构中的probe、suspend等回调;
  4. 实现snd_soc_dai_driver结构中的snd_soc_dai_ops字段中的回调函数;

snd_soc_register_dai  这个函数在上一篇介绍codec驱动的博文中已有介绍,请参考:Linux ALSA声卡驱动之七:ASoC架构中的Codec.
snd_soc_dai  该结构在snd_soc_register_dai函数中通过动态内存申请获得,简要介绍一下几个重要字段

  1. driver  指向关联的snd_soc_dai_driver结构,由注册时通过参数传入;
  2. playback_dma_data  用于保存该dai播放stream的dma信息,例如dma的目标地址,dma传送单元大小和通道号等;
  3. capture_dma_data  同上,用于录音stream;
  4. platform  指向关联的snd_soc_platform结构

snd_soc_dai_driver  该结构需要自己根据不同的soc芯片进行定义,关键字段介绍如下

  1. probe、remove  回调函数,分别在声卡加载和卸载时被调用;
  2. suspend、resume  电源管理回调函数;
  3. ops  指向snd_soc_dai_ops结构,用于配置和控制该dai;
  4. playback  snd_soc_pcm_stream结构,用于指出该dai支持的声道数,码率,数据格式等能力;
  5. capture  snd_soc_pcm_stream结构,用于指出该dai支持的声道数,码率,数据格式等能力;

4. snd_soc_dai_driver中的ops字段

ops字段指向一个snd_soc_dai_ops结构,该结构实际上是一组回调函数的集合,dai的配置和控制几乎都是通过这些回调函数来实现的,这些回调函数基本可以分为3大类,驱动程序可以根据实际情况实现其中的一部分.
工作时钟配置函数 通常由machine驱动调用

  1. set_sysclk  设置dai的主时钟;
  2. set_pll  设置PLL参数;
  3. set_clkdiv  设置分频系数;

dai的格式配置函数  通常由machine驱动调用

  1. set_fmt   设置dai的格式;
  2. set_tdm_slot  如果dai支持时分复用,用于设置时分复用的slot;
  3. set_channel_map 声道的时分复用映射设置;
  4. set_tristate  设置dai引脚的状态,当与其他dai并联使用同一引脚时需要使用该回调

标准的snd_soc_ops回调  通常由soc-core在进行PCM操作时调用

  1. startup
  2. shutdown
  3. hw_params
  4. hw_free
  5. prepare
  6. trigger

抗pop,pop声  由soc-core调用

  1. digital_mute

以下这些api通常被machine驱动使用,machine驱动在他的snd_pcm_ops字段中的hw_params回调中使用这些api

  1. snd_soc_dai_set_fmt()  实际上会调用snd_soc_dai_ops或者codec driver中的set_fmt回调;
  2. snd_soc_dai_set_pll() 实际上会调用snd_soc_dai_ops或者codec driver中的set_pll回调;
  3. snd_soc_dai_set_sysclk()  实际上会调用snd_soc_dai_ops或者codec driver中的set_sysclk回调;
  4. snd_soc_dai_set_clkdiv()  实际上会调用snd_soc_dai_ops或者codec driver中的set_clkdiv回调;

snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)的第二个参数fmt在这里特别说一下,ASoC目前只是用了它的低16位,并且为它专门定义了一些宏来方便我们使用:

bit 0-3 用于设置接口的格式:

1 #define SND_SOC_DAIFMT_I2S        1 /* I2S mode */
2 #define SND_SOC_DAIFMT_RIGHT_J        2 /* Right Justified mode */
3 #define SND_SOC_DAIFMT_LEFT_J        3 /* Left Justified mode */
4 #define SND_SOC_DAIFMT_DSP_A        4 /* L data MSB after FRM LRC */
5 #define SND_SOC_DAIFMT_DSP_B        5 /* L data MSB during FRM LRC */
6 #define SND_SOC_DAIFMT_AC97        6 /* AC97 */
7 #define SND_SOC_DAIFMT_PDM        7 /* Pulse density modulation */

bit 4-7 用于设置接口时钟的开关特性:

1 #define SND_SOC_DAIFMT_CONT        (1 << 4) /* continuous clock */
2 #define SND_SOC_DAIFMT_GATED        (2 << 4) /* clock is gated */

bit 8-11 用于设置接口时钟的相位:

1 #define SND_SOC_DAIFMT_NB_NF        (1 << 8) /* normal bit clock + frame */
2 #define SND_SOC_DAIFMT_NB_IF        (2 << 8) /* normal BCLK + inv FRM */
3 #define SND_SOC_DAIFMT_IB_NF        (3 << 8) /* invert BCLK + nor FRM */
4 #define SND_SOC_DAIFMT_IB_IF        (4 << 8) /* invert BCLK + FRM */

bit 12-15 用于设置接口主从格式:

1 #define SND_SOC_DAIFMT_CBM_CFM        (1 << 12) /* codec clk & FRM master */
2 #define SND_SOC_DAIFMT_CBS_CFM        (2 << 12) /* codec clk slave & FRM master */
3 #define SND_SOC_DAIFMT_CBM_CFS        (3 << 12) /* codec clk master & frame slave */
4 #define SND_SOC_DAIFMT_CBS_CFS        (4 << 12) /* codec clk & FRM slave */

5. snd_soc_platform_driver中的ops字段

该ops字段是一个snd_pcm_ops结构,实现该结构中的各个回调函数是soc platform驱动的主要工作,他们基本都涉及dma操作以及dma buffer的管理等工作.下面介绍几个重要的回调函数:

ops.open 当应用程序打开一个pcm设备时,该函数会被调用,通常,该函数会使用snd_soc_set_runtime_hwparams()设置substream中的snd_pcm_runtime结构里面的hw_params相关字段,然后为snd_pcm_runtime的private_data字段申请一个私有结构,用于保存该平台的dma参数.

ops.hw_params 驱动的hw_params阶段,该函数会被调用.通常,该函数会通过snd_soc_dai_get_dma_data函数获得对应的dai的dma参数,获得的参数一般都会保存在snd_pcm_runtime结构的private_data字段.然后通过snd_pcm_set_runtime_buffer函数设置snd_pcm_runtime结构中的dma buffer的地址和大小等参数.要注意的是,该回调可能会被多次调用,具体实现时要小心处理多次申请资源的问题.

ops.prepare 正式开始数据传送之前会调用该函数,该函数通常会完成dma操作的必要准备工作.

ops.trigger 数据传送的开始,暂停,恢复和停止时,该函数会被调用.

ops.pointer 该函数返回传送数据的当前位置.

6. 音频数据的dma操作

soc-platform驱动的最主要功能就是要完成音频数据的传送,大多数情况下,音频数据都是通过dma来完成的.

6.1 申请dma buffer

因为dma的特殊性,dma buffer是一块特殊的内存,比如有的平台规定只有某段地址范围的内存才可以进行dma操作,而多数嵌入式平台还要求dma内存的物理地址是连续的,以方便dma控制器对内存的访问.在ASoC架构中,dma buffer的信息保存在snd_pcm_substream结构的snd_dma_buffer *buf字段中,它的定义如下

1 struct snd_dma_buffer {
2     struct snd_dma_device dev;    /* device type */
3     unsigned char *area;    /* virtual pointer */
4     dma_addr_t addr;    /* physical address */
5     size_t bytes;        /* buffer size in bytes */
6     void *private_data;    /* private for allocator; don't touch */
7 };

那么,在哪里完成了snd_dam_buffer结构的初始化赋值操作呢?答案就在snd_soc_platform_driver的pcm_new回调函数中,还是以/sound/soc/samsung/dma.c为例

 1 static struct snd_soc_platform_driver samsung_asoc_platform = {
 2     .ops        = &dma_ops,
 3     .pcm_new    = dma_new,
 4     .pcm_free    = dma_free_dma_buffers,
 5 };
 6 
 7 static int __devinit samsung_asoc_platform_probe(struct platform_device *pdev)
 8 {
 9     return snd_soc_register_platform(&pdev->dev, &samsung_asoc_platform);
10 }

pcm_new字段指向了dma_new函数,dma_new函数进一步为playback和capture分别调用preallocate_dma_buffer函数,我们看看preallocate_dma_buffer函数的实现

 1 static int preallocate_dma_buffer(struct snd_pcm *pcm, int stream)
 2 {
 3     struct snd_pcm_substream *substream = pcm->streams[stream].substream;
 4     struct snd_dma_buffer *buf = &substream->dma_buffer;
 5     size_t size = dma_hardware.buffer_bytes_max;
 6 
 7     pr_debug("Entered %s\n", __func__);
 8 
 9     buf->dev.type = SNDRV_DMA_TYPE_DEV;
10     buf->dev.dev = pcm->card->dev;
11     buf->private_data = NULL;
12     buf->area = dma_alloc_writecombine(pcm->card->dev, size,
13                        &buf->addr, GFP_KERNEL);
14     if (!buf->area)
15         return -ENOMEM;
16     buf->bytes = size;
17     return 0;
18 }

该函数先是获得事先定义好的buffer大小,然后通过dma_alloc_weitecombine函数分配dma内存,然后完成substream->dma_buffer的初始化赋值工作.上述的pcm_new回调会在声卡的建立阶段被调用,调用的详细的过程请参考Linux ALSAs声卡驱动之六:ASoC架构中的Machine中的图3.1.

在声卡的hw_params阶段,snd_soc_platform_driver结构的ops->hw_params会被调用,在该回调用,通常会使用api:snd_pcm_set_runtime_buffer()把substream->dma_buffer的数值拷贝到substream->runtime的相关字段中(.dma_area, .dma_addr,  .dma_bytes),这样以后就可以通过substream->runtime获得这些地址和大小信息了.

dma buffer获得后,即是获得了dma操作的源地址,那么目的地址在哪里?其实目的地址当然是在dai中,也就是前面介绍的snd_soc_dai结构的playback_dma_data和capture_dma_data字段中,而这两个字段的值也是在hw_params阶段,由snd_soc_dai_driver结构的ops->hw_params回调,利用api:snd_soc_dai_set_dma_data进行设置的.紧随其后,snd_soc_platform_driver结构的ops->hw_params回调利用api:snd_soc_dai_get_dma_data获得这些dai的dma信息,其中就包括了dma的目的地址信息.这些dma信息通常还会被保存在substream->runtime->private_data中,以便在substream的整个生命周期中可以随时获得这些信息,从而完成对dma的配置和操作.

6.2 dma buffer管理

播放时,应用程序把音频数据源源不断地写入dma buffer中,然后相应platform的dma操作则不停地从该buffer中取出数据,经dai送往codec中.录音时则正好相反,codec源源不断地把A/D转换好的音频数据经过dai送入dma buffer中,而应用程序则不断地从该buffer中读走音频数据.

      图6.2.1   环形缓冲区

环形缓冲区正好适合用于这种情景的buffer管理,理想情况下,大小为Count的缓冲区具备一个读指针和写指针,我们期望他们都可以闭合地做环形移动,但是实际的情况确实:缓冲区通常都是一段连续的地址,他是有开始和结束两个边界,每次移动之前都必须进行一次判断,当指针移动到末尾时就必须人为地让他回到起始位置.在实际应用中,我们通常都会把这个大小为Count的缓冲区虚拟成一个大小为n*Count的逻辑缓冲区,相当于理想状态下的圆形绕了n圈之后,然后把这段总的距离拉平为一段直线,每一圈对应直线中的一段,因为n比较大,所以大多数情况下不会出现读写指针的换位的情况(如果不对buffer进行扩展,指针到达末端后,回到起始端时,两个指针的前后相对位置会发生互换).扩展后的逻辑缓冲区在计算剩余空间可条件判断是相对方便.alsa driver也使用了该方法对dma buffer进行管理:

      图6.2.2  alsa driver缓冲区管理

snd_pcm_runtime结构中,使用了四个相关的字段来完成这个逻辑缓冲区的管理
  • snd_pcm_runtime.hw_ptr_base  环形缓冲区每一圈的基地址,当读写指针越过一圈后,它按buffer size进行移动;
  • snd_pcm_runtime.status->hw_ptr  硬件逻辑位置,播放时相当于读指针,录音时相当于写指针;
  • snd_pcm_runtime.control->appl_ptr  应用逻辑位置,播放时相当于写指针,录音时相当于读指针;
  • snd_pcm_runtime.boundary  扩展后的逻辑缓冲区大小,通常是(2^n)*size;

通过这几个字段,我们可以很容易地获得缓冲区的有效数据,剩余空间等信息,也可以很容易地把当前逻辑位置映射回真实的dma buffer中.例如,获得播放缓冲区的空闲空间

1 static inline snd_pcm_uframes_t snd_pcm_playback_avail(struct snd_pcm_runtime *runtime)
2 {
3     snd_pcm_sframes_t avail = runtime->status->hw_ptr + runtime->buffer_size - runtime->control->appl_ptr;
4     if (avail < 0)
5         avail += runtime->boundary;
6     else if ((snd_pcm_uframes_t) avail >= runtime->boundary)
7         avail -= runtime->boundary;
8     return avail;
9 }

要想映射到真正的缓冲区位置,只要减去runtime->hw_ptr_base即可.下面的api用于更新这几个指针的当前位置

1 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)

所以要想通过snd_pcm_playback_avail等函数获得正确的信息前,应该先要调用这个api更新指针位置.

以播放(playback)为例,我现在知道至少有3个途径可以完成对dma buffer的写入:

  • 应用程序调用alsa-lib的snd_pcm_writei、snd_pcm_writen函数;
  • 应用程序使用ioctl:SNDRV_PCM_IOCTL_WRITEI_FRAMES或SNDRV_PCM_IOCTL_WRITEN_FRAMES;
  • 应用程序使用alsa-lib的snd_pcm_mmap_begin/snd_pcm_mmap_commit;

以上几种方式最终把数据写入dma buffer中,然后修改runtime->control->appl_ptr的值.

播放过程中,通常会配置成每一个period size生成一个dma中断,中断处理函数最重要的任务就是:

  • 更新dma的硬件的当前位置,该数值通常保存在runtime->private_data中;
  • 调用snd_pcm_period_elapsed函数,该函数会进一步调用snd_pcm_update_hw_ptr0函数更新上述所说的4个缓冲区管理字段,然后唤醒相应的等待进程
 1 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
 2 {
 3     struct snd_pcm_runtime *runtime;
 4     unsigned long flags;
 5 
 6     if (PCM_RUNTIME_CHECK(substream))
 7         return;
 8     runtime = substream->runtime;
 9 
10     if (runtime->transfer_ack_begin)
11         runtime->transfer_ack_begin(substream);
12 
13     snd_pcm_stream_lock_irqsave(substream, flags);
14     if (!snd_pcm_running(substream) ||
15         snd_pcm_update_hw_ptr0(substream, 1) < 0)
16         goto _end;
17 
18     if (substream->timer_running)
19         snd_timer_interrupt(substream->timer, 1);
20  _end:
21     snd_pcm_stream_unlock_irqrestore(substream, flags);
22     if (runtime->transfer_ack_end)
23         runtime->transfer_ack_end(substream);
24     kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
25 }

如果设置了transfer_ack_begin和transfer_ack_end回调,snd_pcm_period_elapsed还会调用这两个回调函数.

7. 图说代码

最后,反正图也画了,好与不好都传上来供参考一下,以下这张图表达了 ASoC中Platform驱动的几个重要数据结构之间的关系

      图7.1   ASoC Platform驱动

一堆的private_data,很重要但也很容易搞混,下面的图不知对大家有没有帮助

      图7.2  private_data

本文转自:http://blog.csdn.net/droidphone/article/details/7316061

posted on 2013-06-07 17:04  冷烟花  阅读(3467)  评论(0编辑  收藏  举报