分级聚类算法以一组对应于原始数据项的聚类开始。函数的主循环部分会尝试每一组可能的配对并计算他们的相关度,以此来找出最佳配对。最佳配对的两个聚类会被合并成一个新的聚类。新生成的聚类中所包含的数据,等于将两个旧聚类的数据求均值之后得到的结果。循环下去,一直到只剩下一个聚类为止。

python实现代码:

def hcluster(rows,distance=pearson):
  distances={}
  currentclustid=-1

  # Clusters are initially just the rows
  clust=[bicluster(rows[i],id=i) for i in range(len(rows))]

  while len(clust)>1:
    lowestpair=(0,1)
    closest=distance(clust[0].vec,clust[1].vec)
    print "closest",closest
    # loop through every pair looking for the smallest distance
    for i in range(len(clust)):
      for j in range(i+1,len(clust)):
        # distances is the cache of distance calculations
        if (clust[i].id,clust[j].id) not in distances: 
          distances[(clust[i].id,clust[j].id)]=distance(clust[i].vec,clust[j].vec)

        d=distances[(clust[i].id,clust[j].id)]

        if d<closest:
          closest=d
          lowestpair=(i,j)

    # calculate the average of the two clusters
    mergevec=[
    (clust[lowestpair[0]].vec[i]+clust[lowestpair[1]].vec[i])/2.0 
    for i in range(len(clust[0].vec))]

    # create the new cluster
    newcluster=bicluster(mergevec,left=clust[lowestpair[0]],
                         right=clust[lowestpair[1]],
                         distance=closest,id=currentclustid)

    # cluster ids that weren't in the original set are negative
    currentclustid-=1
    del clust[lowestpair[1]]
    del clust[lowestpair[0]]
    clust.append(newcluster)

  return clust[0]

 

posted on 2016-03-04 17:13  充实自己  阅读(2368)  评论(0编辑  收藏  举报