数据库笔记

事务四大特性(ACID)原子性、一致性、隔离性、持久性?

原子性(Atomicity)

原子性是指事务包含的所有操作要么全部成功,要么全部失败回滚,因此事务的操作如果成功就必须要完全应用到数据库,如果操作失败则不能对数据库有任何影响。


一致性(Consistency)

事务开始前和结束后,数据库的完整性约束没有被破坏。比如A向B转账,不可能A扣了钱,B却没收到。


隔离性(Isolation)

隔离性是当多个用户并发访问数据库时,比如操作同一张表时,数据库为每一个用户开启的事务,不能被其他事务的操作所干扰,多个并发事务之间要相互隔离。
同一时间,只允许一个事务请求同一数据,不同的事务之间彼此没有任何干扰。

比如A正在从一张银行卡中取钱,在A取钱的过程结束前,B不能向这张卡转账。

关于事务的隔离性数据库提供了多种隔离级别,稍后会介绍到。

 

 持久性(Durability)

持久性是指一个事务一旦被提交了,那么对数据库中的数据的改变就是永久性的,即便是在数据库系统遇到故障的情况下也不会丢失提交事务的操作。

事务的并发?事务隔离级别,每个级别会引发什么问题,MySQL默认是哪个级别?

 

从理论上来说, 事务应该彼此完全隔离, 以避免并发事务所导致的问题,然而, 那样会对性能产生极大的影响, 因为事务必须按顺序运行, 在实际开发中, 为了提升性能, 事务会以较低的隔离级别运行, 事务的隔离级别可以通过隔离事务属性指定。

 

 

事务的并发问题

(1)脏读事务A读取了事务B更新的数据,然后B回滚操作,那么A读取到的数据是脏数据

(2)不可重复读:事务 A 多次读取同一数据,事务 B 在事务A多次读取的过程中,对数据作了更新并提交,导致事务A多次读取同一数据时,结果因此本事务先后两次读到的数据结果会不一致。

(3)幻读:幻读解决了不重复读,保证了同一个事务里,查询的结果都是事务开始时的状态(一致性)。不可重复读的和幻读很容易混淆,不可重复读侧重于修改,幻读侧重于新增或删除。解决不可重复读的问题只需锁住满足条件的行,解决幻读需要锁表。

 

事务的隔离级别

 

读未提交:另一个事务修改了数据,但尚未提交,而本事务中的SELECT会读到这些未被提交的数据脏读
不可重复读:事务 A 多次读取同一数据,事务 B 在事务A多次读取的过程中,对数据作了更新并提交,导致事务A多次读取同一数据时,结果因此本事务先后两次读到的数据结果会不一致。
可重复读:在同一个事务里,SELECT的结果是事务开始时时间点的状态,因此,同样的SELECT操作读到的结果会是一致的。但是,会有幻读现象
串行化:最高的隔离级别,在这个隔离级别下,不会产生任何异常。并发的事务,就像事务是在一个个按照顺序执行一样


 

 

 


MySQL常见的三种存储引擎(InnoDB、MyISAM、MEMORY)的区别?

 

 


MySQL的MyISAM与InnoDB两种存储引擎在,事务、锁级别,各自的适用场景?


查询语句不同元素(where、jion、limit、group by、having等等)执行先后顺序?

 

 

(1)查询中用到的关键词主要包含六个,并且他们的顺序依次为 select--from--where--group by--having--order by

其中select和from是必须的,其他关键词是可选的,这六个关键词的执行顺序 与sql语句的书写顺序并不是一样的,而是按照下面的顺序来执行

from:需要从哪个数据表检索数据
where:过滤表中数据的条件
group by:如何将上面过滤出的数据分组
having:对上面已经分组的数据进行过滤的条件
select:查看结果集中的哪个列,或列的计算结果
order by :按照什么样的顺序来查看返回的数据
(2)from后面的表关联,是自右向左解析 而where条件的解析顺序是自下而上的。

也就是说,在写SQL文的时候,尽量把数据量小的表放在最右边来进行关联(用小表去匹配大表),而把能筛选出小量数据的条件放在where语句的最左边 (用小表去匹配大表)

 

 


什么是临时表,临时表什么时候删除?


MySQL B+Tree索引和Hash索引的区别?

  • Hash索引结构的特殊性,其检索效率非常高,索引的检索可以一次定位;
  • B+树索引需要从根节点到枝节点,最后才能访问到页节点这样多次的IO访问;

 

(1)Hash索引仅仅能满足"=","IN"和"<=>"查询,不能使用范围查询,因为经过相应的Hash算法处理之后的Hash值的大小关系,并不能保证和Hash运算前完全一样;

(2)Hash索引无法被用来避免数据的排序操作,因为Hash值的大小关系并不一定和Hash运算前的键值完全一样;

(3)Hash索引不能利用部分索引键查询,对于组合索引,Hash索引在计算Hash值的时候是组合索引键合并后再一起计算Hash值,而不是单独计算Hash值,所以通过组合索引的前面一个或几个索引键进行查询的时候,Hash索引也无法被利用;

(4)Hash索引在任何时候都不能避免表扫描,由于不同索引键存在相同Hash值,所以即使取满足某个Hash键值的数据的记录条数,也无法从Hash索引中直接完成查询,还是要回表查询数据;

(5)Hash索引遇到大量Hash值相等的情况后性能并不一定就会比B+树索引高。
————————————————
版权声明:本文为CSDN博主「java喵~」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/mifffy_java/java/article/details/90896257

 


sql查询语句确定创建哪种类型的索引?如何优化查询?


聚集索引和非聚集索引区别?

聚集索引

聚集索引表记录的排列顺序和索引的排列顺序一致,所以查询效率快,只要找到第一个索引值记录,其余就连续性的记录在物理也一样连续存放。聚集索引对应的缺点就是修改慢,因为为了保证表中记录的物理和索引顺序一致,在记录插入的时候,会对数据页重新排序。

聚集索引类似于新华字典中用拼音去查找汉字,拼音检索表于书记顺序都是按照a~z排列的,就像相同的逻辑顺序于物理顺序一样,当你需要查找a,ai两个读音的字,或是想一次寻找多个傻(sha)的同音字时,也许向后翻几页,或紧接着下一行就得到结果了。

非聚集索引

非聚集索引制定了表中记录的逻辑顺序,但是记录的物理和索引不一定一致,两种索引都采用B+树结构,非聚集索引的叶子层并不和实际数据页相重叠,而采用叶子层包含一个指向表中的记录在数据页中的指针方式。非聚集索引层次多,不会造成数据重排。

非聚集索引类似在新华字典上通过偏旁部首来查询汉字,检索表也许是按照横、竖、撇来排列的,但是由于正文中是a~z的拼音顺序,所以就类似于逻辑地址于物理地址的不对应。同时适用的情况就在于分组,大数目的不同值,频繁更新的列中,这些情况即不适合聚集索引。

 

 


有哪些锁(乐观锁悲观锁),select 时怎么加排它锁?


非关系型数据库和关系型数据库区别,优势比较?


数据库三范式,根据某个场景设计数据表?


数据库的读写分离、主从复制,主从复制分析的 7 个问题?


使用explain优化sql和索引?


MySQL慢查询怎么解决?


什么是 内连接、外连接、交叉连接、笛卡尔积等?


mysql都有什么锁,死锁判定原理和具体场景,死锁怎么解决?


varchar和char的使用场景?


mysql 高并发环境解决方案?

数据库崩溃时事务的恢复机制(REDO日志和UNDO日志)?

posted @ 2020-05-20 18:37  孙中明  阅读(152)  评论(0编辑  收藏  举报