这道题里面有个隐藏条件:nums[-1] = nums[n] = -∞, 这就意味着数组最边上的两个数也有可能符合条件被返回,
算法如下:
public int findPeakElement(int[] nums) { int i=0; for(;i<nums.length-1;i++){ if(nums[i]>nums[i+1]) return i; } return i; }
但是题目要求:时间复杂度必须是O(log n),其实就是在考察binary search。
1. If you find your right neighbor is smaller than you, your neighbor will never be an candidate, but you might be, so end = mid.
2. If you find your right neighbor is bigger than you, you will never be an candidate, but your neighbor might be, so start =mid+1.
Binary Search的算法如下,时间复杂度O(log n):
public int findPeakElement(int[] nums) { if (nums.length == 0) return 0; int start = 0, end = nums.length - 1; int mid = (start + end) / 2; while (start < end) { if (nums[mid] > nums[mid + 1]) { end = mid; } else { start = mid + 1; } mid = (start + end) / 2; } return mid; }
public int findPeakElement(int[] nums) { return helper(nums, 0, nums.length-1); } private int helper(int[] nums, int l, int r){ if(l==r) return l; int mid = (l+r)/2; if(nums[mid]<nums[mid+1]){ return helper(nums, mid+1, r); } else{ return helper(nums, l, mid); } }
利用万能模版:
class Solution { public int findPeakElement(int[] nums) {if(nums.length==1) return 0; int l=0, r=nums.length-1; while(l+1<r){ int mid = (l+r)/2; if(nums[mid]<nums[mid+1]){ l=mid; } else r=mid; } if(nums[l]>nums[l+1]) return l; else return r; } }
那么如果题目变一变,求最底peak呢?只要改动一个符号即可:
1. If you find your right neighbor is bigger than you, your neighbor will never be an candidate, but you might be, so end = mid.
2. If you find your right neighbor is smaller than you, you will never be an candidate, but your neighbor might be, so start =mid+1.
public int findPeakElement(int[] nums) { if (nums.length == 0) return 0; int start = 0, end = nums.length - 1; int mid = (start + end) / 2; while (start < end) { if (nums[mid] < nums[mid + 1]) { //only change from ">" to "<" end = mid; } else { start = mid + 1; } mid = (start + end) / 2; } return mid; }
public int findPeakElement(int[] nums) { return helper(nums, 0, nums.length-1); } private int helper(int[] nums, int l, int r){ if(l==r) return l; int mid = (l+r)/2; if(nums[mid]>nums[mid+1]){ return helper(nums, mid+1, r); } else{ return helper(nums, l, mid); } }