这道题很明显,需要用到stack,我一开始的想法是用两个stack,一个存functions,一个存start times,算法如下:

package stack;

import java.util.List;
import java.util.Stack;

public class ExclusiveTimeofFunctions636 {
    public int[] exclusiveTime(int n, List<String> logs) {
        int[] res = new int[n];
        Stack<Integer> funs = new Stack<>();
        Stack<Integer> starts = new Stack<>();

        for (int i = 0; i < logs.size(); i++) {
            String[] logInfo = logs.get(i).split(":");
            int currFun = Integer.valueOf(logInfo[0]);
            int currTime = Integer.valueOf(logInfo[2]);
            if ("start".equals(logInfo[1])) {
                if (!funs.isEmpty()) {
                    int lastFun = funs.peek();
                    int lastStart = starts.peek();
                    res[lastFun] += currTime - lastStart;
                }
                funs.add(currFun);
                starts.add(currTime);
            } else {
                int lastStart = starts.pop();
                int lastFun = funs.pop();
                res[lastFun] += currTime + 1 - lastStart;
                if (!funs.isEmpty()) {
                    starts.pop();
                    starts.add(currTime + 1);
                }
            }
        }
        return res;
    }
}

上面的算法虽然work,但是稍显繁琐,仔细分析一下,其实start time不需要放在stack中,我们只需要上一个function的开始时间和新的function的开始时间即可,改进算法如下:

class Solution {
    public int[] exclusiveTime(int n, List<String> logs) {
        Stack<Integer> funcs = new Stack<>();
        int lastStart=0;
        int[] res = new int[n];
        
        for(String s: logs){
            String[] infos = s.split(":");
            int func = Integer.valueOf(infos[0]);
            int time = Integer.valueOf(infos[2]);
            
            if(!funcs.empty()){
                res[funcs.peek()]+=time-lastStart;
            }
            if("start".equals(infos[1])){
                funcs.add(func);
                lastStart = time;
               
            }else{
                res[funcs.pop()]++;
                lastStart = time+1;
            }
        }
        return res;
    }
}

以上两个算法的时间和空间复杂度均是O(n).

 

posted on 2022-01-03 09:33  阳光明媚的菲越  阅读(24)  评论(0编辑  收藏  举报