系统学习教程网站:http://www.w3cschool.cc/python/python-multithreading.html

下图的原文url:http://www.cnblogs.com/huxi/archive/2010/06/26/1765808.html

 

1,Python中使用线程有两种方式:函数或者用类来包装线程对象

  (1),函数式:调用thread模块中的start_new_thread()函数来产生新线程。语法如下:

thread.start_new_thread ( function, args[, kwargs] )

参数说明:

  • function - 线程函数。
  • args - 传递给线程函数的参数,他必须是个tuple类型。
  • kwargs - 可选参数。

实例:

def func():

    print 'Starting'

    print 'Ending'


t=threading.Thread(name='func',target=func)

t.start()

 

thread.start_new_thread( print_time, ("Thread-1", 2, ) )

  

  (2),继承式

class ThreadClass(threading.Thread):

    def __init__(self, group = None, target = None, name = None, args = (), kwargs = {}):

        threading.Thread.__init__(self, group, target, name, args, kwargs)


    def run(self):

        print 'Starting'

        print 'Ending'


t = ThreadClass()

t.start()

        Thread类的构造函数定义如下:

        class threading.Thread(group=Nonetarget=Nonename=Noneargs=()kwargs={})

        group:留作ThreadGroup扩展使用,一般赋值NULL

        target:就是新建线程要执行的任务函数名

        name:线程的名字,也可使用getName(),setName()获取或者修改

        args:tuple参数

        kwargs:dictionary参数

 线程的结束一般依靠线程函数的自然结束或者设置成守护线程,随主线程结束;也可以在线程函数中调用thread.exit(),他抛出SystemExit exception,达到退出线程的目的。

2,线程模块常用方法:

Python通过两个标准库thread和threading提供对线程的支持。thread提供了低级别的、原始的线程以及一个简单的锁。

thread 模块提供的其他方法:

  • threading.currentThread(): 返回当前的线程变量。
  • threading.enumerate(): 返回一个包含正在运行的线程的list。正在运行指线程启动后、结束前,不包括启动前和终止后的线程。
  • threading.activeCount(): 返回正在运行的线程数量,与len(threading.enumerate())有相同的结果。

除了使用方法外,线程模块同样提供了Thread类来处理线程,Thread类提供了以下方法(只要是线程对象,都可以调用下边方法):

  • run(): 用以表示线程活动的方法。
  • start():启动线程活动。
  • join([time]): 等待至线程中止。这阻塞调用线程直至线程的join() 方法被调用中止-正常退出或者抛出未处理的异常-或者是可选的超时发生。
  • isAlive(): 返回线程是否活动的。
  • getName(): 返回线程名。
  • setName(): 设置线程名。

3,线程同步(线程锁实现线程同步)

  

  如果多个线程共同对某个数据修改,则可能出现不可预料的结果,为了保证数据的正确性,需要对多个线程进行同步。

  使用Thread对象的Lock和Rlock可以实现简单的线程同步,这两个对象都有acquire方法和release方法,对于那些需要每次只允许一个线程操作的数据,可以将其操作放到acquire和release方法之间。如下:

  多线程的优势在于可以同时运行多个任务(至少感觉起来是这样)。但是当线程需要共享数据时,可能存在数据不同步的问题

  考虑这样一种情况:一个列表里所有元素都是0,线程"set"从后向前把所有元素改成1,而线程"print"负责从前往后读取列表并打印。那么,可能线程"set"开始改的时候,线程"print"便来打印列表了,输出就成了一半0一半1,这就是数据的不同步。为了避免这种情况,引入了锁的概念。

  锁有两种状态——锁定和未锁定每当一个线程比如"set"要访问共享数据时,必须先获得锁定如果已经有别的线程比如"print"获得锁定了,那么就让线程"set"暂停,也就是同步阻塞等到线程"print"访问完毕,释放锁以后,再让线程"set"继续

  经过这样的处理,打印列表时要么全部输出0,要么全部输出1,不会再出现一半0一半1的尴尬场面。

  实例:

#!/usr/bin/python
import threading
import time

class myThread (threading.Thread):
    def __init__(self, threadID, name, counter):
        threading.Thread.__init__(self)
        self.threadID = threadID
        self.name = name
        self.counter = counter
    def run(self):
        print "Starting " + self.name
       # 获得锁,成功获得锁定后返回True
       # 可选的timeout参数不填时将一直阻塞直到获得锁定
       # 否则超时后将返回False
        threadLock.acquire()
        print_time(self.name, self.counter, 3)
        # 释放锁
        threadLock.release()

def print_time(threadName, delay, counter):
    while counter:
        time.sleep(delay)
        print "%s: %s" % (threadName, time.ctime(time.time()))
        counter -= 1

threadLock = threading.Lock()
threads = []

# 创建新线程
thread1 = myThread(1, "Thread-1", 1)
thread2 = myThread(2, "Thread-2", 2)

# 开启新线程
thread1.start()
thread2.start()

# 添加线程到线程列表
threads.append(thread1)
threads.append(thread2)

# 等待所有线程完成
for t in threads:
    t.join()
print "Exiting Main Thread"

 

4,线程优先级队列( Queue)---线程池概念。具体概念看Python标准库。

  Python的Queue模块中提供了同步的、线程安全的队列类,包括FIFO(先入先出)队列Queue,LIFO(后入先出)队列 LifoQueue,和优先级队列PriorityQueue。这些队列都实现了锁原语,能够在多线程中直接使用。可以使用队列来实现线程间的同步。

Queue模块中的常用方法:

  • Queue.qsize() 返回队列的大小
  • Queue.empty() 如果队列为空,返回True,反之False
  • Queue.full() 如果队列满了,返回True,反之False
  • Queue.full 与 maxsize 大小对应
  • Queue.get([block[, timeout]])获取队列,timeout等待时间
  • Queue.get_nowait() 相当Queue.get(False)
  • Queue.put(item) 写入队列,timeout等待时间
  • Queue.put_nowait(item) 相当Queue.put(item, False)
  • Queue.task_done() 在完成一项工作之后,Queue.task_done()函数向任务已经完成的队列发送一个信号
  • Queue.join() 实际上意味着等到队列为空,再执行别的操作

  实例:

#!/usr/bin/python
import Queue
import threading
import time

exitFlag = 0

class myThread (threading.Thread):
    def __init__(self, threadID, name, q):
        threading.Thread.__init__(self)
        self.threadID = threadID
        self.name = name
        self.q = q
    def run(self):
        print "Starting " + self.name
        process_data(self.name, self.q)
        print "Exiting " + self.name

def process_data(threadName, q):
    while not exitFlag:
        queueLock.acquire()
        if not workQueue.empty():
            data = q.get()
            queueLock.release()
            print "%s processing %s" % (threadName, data)
        else:
            queueLock.release()
        time.sleep(1)

threadList = ["Thread-1", "Thread-2", "Thread-3"]
nameList = ["One", "Two", "Three", "Four", "Five"]
queueLock = threading.Lock()
workQueue = Queue.Queue(10)
threads = []
threadID = 1

# 创建新线程
for tName in threadList:
    thread = myThread(threadID, tName, workQueue)
    thread.start()
    threads.append(thread)
    threadID += 1

# 填充队列
queueLock.acquire()
for word in nameList:
    workQueue.put(word)
queueLock.release()

# 等待队列清空
while not workQueue.empty():
    pass

# 通知线程是时候退出
exitFlag = 1

# 等待所有线程完成
for t in threads:
    t.join()
print "Exiting Main Thread"

以上程序执行结果:

Starting Thread-1
Starting Thread-2
Starting Thread-3
Thread-1 processing One
Thread-2 processing Two
Thread-3 processing Three
Thread-1 processing Four
Thread-2 processing Five
Exiting Thread-3
Exiting Thread-1
Exiting Thread-2
Exiting Main Thread
posted on 2014-05-13 18:20  学到老死  阅读(234)  评论(0编辑  收藏  举报