自己实现HashMap
一载体
HashMap是由数组组成,数组元素为哈希链。
数组
public class MyHashMap<K, V> { transient Node<K, V>[] table; }
数组元素
@SuppressWarnings("hiding") class Node<K, V> implements Map.Entry<K, V> { final int hash; final K key; V value; Node<K, V> next; Node(int hash, K key, V value, Node<K, V> next) { this.hash = hash; this.key = key; this.value = value; this.next = next; } @Override public K getKey() { return key; } @Override public V getValue() { return value; } @Override public V setValue(V value) { V tempValue = value; this.value = value; return tempValue; } @Override public String toString() { return "Node [ key=" + key + " , value=" + value + " , " + "]"; } @Override public int hashCode() { return Objects.hashCode(key) ^ Objects.hashCode(value); } public final boolean equals(Object o) { if (o == this) return true; if (o instanceof Map.Entry) { Map.Entry<?, ?> e = (Map.Entry<?, ?>) o; if (Objects.equals(key, e.getKey()) && Objects.equals(value, e.getValue())) return true; } return false; } }
二属性
private static int initCount = 16;//初始化长度 private static float loadFator = 0.75f;//加载因子 private int size; private static int threshold;//扩容临界值 static final int MAXIMUM_CAPACITY = 1 << 30;
添加构造方法初始化属性
public MyHashMap(){ this(initCount, loadFator); } public MyHashMap(int initCount){ this(initCount, loadFator); } public MyHashMap(int initCount, float loadFator){ if(initCount < 0){ throw new IllegalArgumentException("初始化长度不合法 : " + initCount); } if(initCount > MAXIMUM_CAPACITY){ initCount = MAXIMUM_CAPACITY; } if(loadFator <0 || Float.isNaN(loadFator)){ throw new IllegalArgumentException("加载因子不合法 : " + loadFator); } this.loadFator = loadFator; this.threshold = (int) (initCount * 2 * loadFator); }
三方法
1增加元素
1.1如果没有哈希碰撞,HashMap就相当于一个数组,而且查找无需遍历。
public Object put(K key, V value){ if(table == null || table.length == 0){ //此时真正创建数组 table = new Node[initCount]; } int hash = hash(key); int len = table.length; int index = hash % len;// (len-1) & hash if(table[index] == null){ table[index] = new Node<>(hash, key, value, null); } return null; } static final int hash(Object key) { int h; return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16); }
1.2哈希碰撞的情况。
如果按jdk8的实现方式,哈希碰撞的情况分为两种情况,首先是形成一个链表,当链表长度大于8时,会分裂成红黑树。这里只按链表实现。
else{//哈希碰撞 MyHashMap<K, V>.Node<K, V> e = p; do{ if(e.hash == hash && ((e.key == key) || (key != null && key.equals(e.key)))){ V oldValue = p.value; //用新值覆盖旧值 p.value = value; return oldValue; } p = e; }while((e = p.next) != null); //将元素放在链表最前面 table[index] = new Node<K, V>(hash, key, value, p); if(++size > threshold){//扩容 resize(); }
public void resize(){ //TODO }
2获取元素
根据key得到数组索引,再判断有无链表。如有,判断链表长度。为1直接返回。大于1,需循环链表。
public V get(K k){ int hash = hash(k); int len = table.length; int index = hash % len; Node<K,V> node = table[index];//找到链表 if (node == null) { return null; } Node<K,V> p; if ((p = node.next) == null) {//如果链表只有一个元素,直接返回 return node.value; } else {//如果有多个元素,循环比较key p = node; do { if (p.key == k || p.key.equals(k)) { return p.value; } node = p; } while ((p = node.next) != null); } return null; }
3删除元素
首先得找到元素。同样是根据key得到数组索引。判断链表是否有值。无值直接返回。有值分两种情况,一种是被删除元素在链表最前面,那么直接将最前面的指针断掉。否则需要将前一个的指针指向后一个元素。由于链表结构只有next,没有前后左右,所以在循环的时候需要随时保存前一个元素,在找到被删除元素的时候,直接将前一个与后一个连接即可。
public void remove(K k){ int hash = hash(k); int len = table.length; int index = hash % len; Node<K,V> node = table[index]; Node<K,V> prev = node; while (node != null) { if(node.hash == hash && (node.key == k || node.key.equals(k))){ if(node == prev){//被删除元素在链表第一位 table[index] = node.next; }else{ prev.next = node.next;//node 为当前元素 prev为前一个元素 将前一个元素的指针next指向下一个元素 } size--; } prev = node; node = node.next; }; }
四扩容
扩容的触发条件是属性threshold大于HashMap元素个数size。在put元素的时候需要判断。
在增加,删除的时候,会对元素个数进行增减。
注意这里的size并不是指数组长度。而是指链表的总长度。
初始化一个HashMap,在put入第一个值的时候,会初始化一个数组,长度为16,算上负载因子,实际使用长度为12。但并不是说这个数组必须要每个索引都有值才会扩容。如下图所示,只有3个索引有值,但3个索引处的链表总长度达到12,也就达到了扩容的临界点。
HashMap扩容首先需要将数组扩容。数组长度改变,那么所有元素的链表必须重新组合。不然,查找就会乱套。这是比较耗时的。所以,在使用HashMap的时候,如果能预估长度,最好在初始化的时候指定,避免频繁扩容。
public void resize(){ int len = size << 1; threshold = (int)(len * loadFator); size = 0; Node<K,V>[] newTable = new Node[len]; Node<K,V>[] tempTable = table; table = newTable; int tempSize = tempTable.length; for(int i=0; i<tempSize; i++){ Node<K,V> node = tempTable[i]; while(node != null){ put(node.key, node.value); node = node.next; } } }
五迭代
1通过keyset来迭代
keyset得到所有的键的set集合。再通过set的迭代器来迭代。
首先定义一个set集合。
Set<K> keySet;
定义获取keyset的方法
public Set<K> keySet(){ return keySet == null ? (keySet = new KeySet()) : null; }
每次keySet为空,需要通过一个内部类KeySet获取。
class KeySet extends AbstractSet<K>{ @Override public Iterator<K> iterator() { return new newKeyIterator(); } @Override public int size() { return size; } }
继续定义newKeyIterator
final class KeyIterator extends HashIterator implements Iterator<K> { public final K next() { return nextNode().key; } }
继续定义KeyIterator
public class HashIterator{ Node<K,V>[] nodes; Node<K,V> prve; Node<K,V> next; int index; public HashIterator(){ nodes = table; index = 0; prve = next = null; do { prve = next = table[index]; } while((++index < table.length) && next == null); } final Node<K,V> nextNode(){ Node<K,V> e = next; if((next = (prve = e).next) == null && nodes != null){ do { } while(index < table.length && (next = nodes[index++]) == null); } return e; } public boolean hasNext() { return next != null; } }
再执行一个迭代的时候,先得到一个keys的集合,然后根据集合得到迭代器,这时候会执行HashIterator的构造方法,目的是找到第一个链表。
Set<String> keys = map.keySet();
Iterator<String> it = keys.iterator();
然后执行,next时会执行HashIterator的hashNext方法和nextNode方法。
while(it.hasNext()){
String key = it.next();
String value = map.get(key);
}
2通过entrySet。
Set<Map.Entry<K,V>> entrySet; public Set<Map.Entry<K,V>> entrySet(){ return entrySet == null ? (entrySet = new EntrySet()) : null; } class EntrySet extends AbstractSet<Map.Entry<K,V>>{ @Override public Iterator<Map.Entry<K,V>> iterator() { return new EntryIterator(); } @Override public int size() { return size; } } final class EntryIterator extends HashIterator implements Iterator<Map.Entry<K,V>> { public final Node<K,V> next() { return nextNode(); } }
最终代码
import java.util.AbstractSet; import java.util.Map; import java.util.Objects; import java.util.Set; import java.util.Iterator; public class MyHashMap<K, V> { transient Node<K, V>[] table; private static int initCount = 16;//初始化长度 private static float loadFator = 0.75f;//加载因子 private int size; private static int threshold;//扩容临界值 static final int MAXIMUM_CAPACITY = 1 << 30; public MyHashMap(){ this(initCount, loadFator); } public MyHashMap(int initCount){ this(initCount, loadFator); } public MyHashMap(int initCount, float loadFator){ if(initCount < 0){ throw new IllegalArgumentException("初始化长度不合法 : " + initCount); } if(initCount > MAXIMUM_CAPACITY){ initCount = MAXIMUM_CAPACITY; } if(loadFator <0 || Float.isNaN(loadFator)){ throw new IllegalArgumentException("加载因子不合法 : " + loadFator); } this.loadFator = loadFator; this.threshold = (int) (initCount * loadFator); } public Object put(K key, V value){ if(table == null || table.length == 0){ //此时真正创建数组 table = new Node[initCount]; } int hash = hash(key); int len = table.length; int index = (len-1) & hash; Node<K,V> p; if((p = table[index]) == null){ table[index] = new Node<K, V>(hash, key, value, null); }else{//哈希碰撞 MyHashMap<K, V>.Node<K, V> e = p; Node<K,V> temp = p; do{ if(e.hash == hash && ((e.key == key) || (key != null && key.equals(e.key)))){ V oldValue = p.value; //用新值覆盖旧值 p.value = value; return oldValue; } temp = e; }while((e = temp.next) != null); //将元素放在链表最前面 table[index] = new Node<K, V>(hash, key, value, p); } if(++size > threshold){//扩容 resize(); } return null; } public V get(K k){ int hash = hash(k); int len = table.length; int index = (len-1) & hash; Node<K,V> node = table[index];//找到链表 if (node == null) { return null; } Node<K,V> p; if ((p = node.next) == null) {//如果链表只有一个元素,直接返回 return node.value; } else {//如果有多个元素,循环比较key p = node; do { if (p.key == k || p.key.equals(k)) { return p.value; } node = p; } while ((p = node.next) != null); } return null; } public void remove(K k){ int hash = hash(k); int len = table.length; int index = (len-1) & hash; Node<K,V> node = table[index]; Node<K,V> prev = node; while (node != null) { if(node.hash == hash && (node.key == k || node.key.equals(k))){ if(node == prev){//被删除元素在链表第一位 table[index] = node.next; }else{ prev.next = node.next;//node 为当前元素 prev为前一个元素 将前一个元素的指针next指向下一个元素 } size--; } prev = node; node = node.next; }; } Set<K> keySet; public Set<K> keySet(){ return keySet == null ? (keySet = new KeySet()) : null; } Set<Map.Entry<K,V>> entrySet; public Set<Map.Entry<K,V>> entrySet(){ return entrySet == null ? (entrySet = new EntrySet()) : null; } class EntrySet extends AbstractSet<Map.Entry<K,V>>{ @Override public Iterator<Map.Entry<K,V>> iterator() { return new EntryIterator(); } @Override public int size() { return size; } } final class EntryIterator extends HashIterator implements Iterator<Map.Entry<K,V>> { public final Node<K,V> next() { return nextNode(); } } class KeySet extends AbstractSet<K>{ @Override public Iterator<K> iterator() { return new KeyIterator(); } @Override public int size() { return size; } } final class KeyIterator extends HashIterator implements Iterator<K> { public final K next() { return nextNode().key; } } public class HashIterator{ Node<K,V>[] nodes; Node<K,V> prve; Node<K,V> next; int index; public HashIterator(){//得到 keys.iterator();的时候执行此构造方法,找到第一个链表 //找到第一个元素 nodes = table; index = 0; prve = next = null; do { prve = next = table[index]; } while((++index < table.length) && next == null); } final Node<K,V> nextNode(){ Node<K,V> e = next; if((next = (prve = e).next) == null && nodes != null){//循环链表 do { } while(index < table.length && (next = nodes[index++]) == null);//找到下一个链表 } return e; } public boolean hasNext() { return next != null; } } public void resize(){ int len = size << 1; threshold = (int)(len * loadFator); size = 0; Node<K,V>[] newTable = new Node[len]; Node<K,V>[] tempTable = table; table = newTable; int tempSize = tempTable.length; for(int i=0; i<tempSize; i++){ Node<K,V> node = tempTable[i]; while(node != null){ put(node.key, node.value); node = node.next; } } } static final int hash(Object key) { int h; return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16); } @SuppressWarnings("hiding") class Node<K, V> implements Map.Entry<K, V> { final int hash; final K key; V value; Node<K, V> next; Node(int hash, K key, V value, Node<K, V> next) { this.hash = hash; this.key = key; this.value = value; this.next = next; } @Override public K getKey() { return key; } @Override public V getValue() { return value; } @Override public V setValue(V value) { V tempValue = value; this.value = value; return tempValue; } @Override public String toString() { return "[" + key + " : " + value + "]" + " next " + next; } @Override public int hashCode() { return Objects.hashCode(key) ^ Objects.hashCode(value); } public final boolean equals(Object o) { if (o == this) return true; if (o instanceof Map.Entry) { Map.Entry<?, ?> e = (Map.Entry<?, ?>) o; if (Objects.equals(key, e.getKey()) && Objects.equals(value, e.getValue())) return true; } return false; } } }