实现ETL过程,一般可以从以下四个方面考虑:
(一)、准备区的运用(ODS)
在构建数据仓库时,如果数据源位于一台服务器上,数据仓库在另一台服务器端,考虑到数据源Server端访问频繁,并且数据量大,需要不断更新,所以可以建立准备区数据库(ODS)。先将数据抽取到准备区中,然后基于准备区中的数据进行处理,这样处理的好处是防止了在原OLTP系统中频繁访问,进行数据运算或聚合等操作。如果系统中存在多种不同类型的数据库系统,ODS可以简化ETL的开发技术。
(二)、时间戳的运用
时间维度对于某一事实主题来说十分重要,因为不同的时间有不同的统计数据信息,那么按照时间记录的信息将发挥很重要的作用。在ETL中,时间戳有其特殊的作用,在上面提到的缓慢变化维度中,我们可以使用时间戳标识维度成员;在记录数据库和数据仓库的操作时,我们也将使用时间戳标识信息。例如:在进行数据抽取时,我们将按照时间戳对OLTP系统中的数据进行抽取,比如在午夜0:00取前一天的数据,我们将按照OLTP系统中的时间戳取GETDATE到GETDATE减一天,这样得到前一天数据。
(三)、日志表的运用
在对数据进行处理时,难免会发生数据处理错误,产生出错信息,那么我们如何获得出错信息并及时修正呢? 方法是我们使用一张或多张Log日志表,将出错信息记录下来,在日志表中我们将记录每次抽取的条数、处理成功的条数、处理失败的条数、处理失败的数据、处理时间等等。这样,当数据发生错误时,我们很容易发现问题所在,然后对出错的数据进行修正或重新处理。
(四)、使用调度
在对数据仓库进行增量更新时必须使用调度,即对事实数据表进行增量更新处理。在使用调度前要考虑到事实数据量,确定需要多长时间更新一次。比如希望按天进行查看,那么我们最好按天进行抽取,如果数据量不大,可以按照月或半年对数据进行更新。如果有缓慢变化维度情况,调度时需要考虑到维度表更新情况,在更新事实数据表之前要先更新维度表。
调度是数据仓库的关键环节,要考虑缜密。在ETL的流程搭建好后,要定期对其运行,所以调度是执行ETL流程的关键步骤。每一次调度除了写入Log日志表的数据处理信息外,还要使用发送Email或报警服务等,这样也方便的技术人员对ETL流程的把握,增强了安全性和数据处理的准确性。
参考http://topic.csdn.net/u/20080318/14/10b3581f-05a0-41e6-a878-e52775c66b73.html
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 周边上新:园子的第一款马克杯温暖上架
· Open-Sora 2.0 重磅开源!
· .NET周刊【3月第1期 2025-03-02】
· 分享 3 个 .NET 开源的文件压缩处理库,助力快速实现文件压缩解压功能!
· [AI/GPT/综述] AI Agent的设计模式综述