简介
线性回归:根据数据,确定两种或两种以上变量间相互依赖的定量关系
评价曲线的拟合效果使用均方误差和R方值进行拟合质量评估
R方值 :
MSE越接近0越好R方值越接近1越好。
对于离散数据点。
x | y |
---|---|
1 | 7 |
2 | 9 |
3 | 11 |
4 | 13 |
5 | 15 |
进行机器学习线性回归操作
code
import pandas as pd
data = pd.read_csv('generated_data.csv')
data.head()
x = data.loc[:,'x']
y = data.loc[:,'y']
print(x,y)
from matplotlib import pyplot as plt
plt.figure(figsize=(10,10))
plt.scatter(x,y)
plt.show()
from sklearn.linear_model import LinearRegression
lr_model = LinearRegression()
import numpy as np
x = np.array(x)
x = x.reshape(-1,1)
y = np.array(y)
y = y.reshape(-1,1)
print(x,y)
lr_model.fit(x,y)
y_predict = lr_model.predict(x)
print(y_predict)
y_3 = lr_model.predict([[3.5]])
print(y_3)
from sklearn.metrics import mean_squared_error,r2_score
MSE = mean_squared_error(y,y_predict)
R2 = r2_score(y,y_predict)
print(MSE,R2)
plt.figure()
plt.scatter(y,y_predict)
plt.show()
image
---------------------------我的天空里没有太阳,总是黑夜,但并不暗,因为有东西代替了太阳。虽然没有太阳那么明亮,但对我来说已经足够。凭借着这份光,我便能把黑夜当成白天。我从来就没有太阳,所以不怕失去。
--------《白夜行》
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 无需6万激活码!GitHub神秘组织3小时极速复刻Manus,手把手教你使用OpenManus搭建本
· C#/.NET/.NET Core优秀项目和框架2025年2月简报
· Manus爆火,是硬核还是营销?
· 终于写完轮子一部分:tcp代理 了,记录一下
· 【杭电多校比赛记录】2025“钉耙编程”中国大学生算法设计春季联赛(1)
2020-04-19 华为软挑 2020 4_19 浮生日记
2018-04-19 蓝牙 bluez 的编程 C C++
2017-04-19 CMake 实践 小结