【莫队算法详解及例题[BZOJ]2038 小Z的袜子  https://www.cnblogs.com/hzf-sbit/p/4056874.html

及知乎https://zhuanlan.zhihu.com/p/25017840(有例题)】

以上是弱渣的学习过程,及参考的大神博客和知乎,以下是做到的题目

G - XOR and Favorite Number
Bob has a favorite number k and ai of length n. Now he asks you to answer m queries. Each query is given by a pair li and ri and asks you to count the number of pairs of integers i and j, such that l ≤ i ≤ j ≤ r and the xor of the numbers ai, ai + 1, …, aj is equal to k.

Input
The first line of the input contains integers n, m and k (1 ≤ n, m ≤ 100 000, 0 ≤ k ≤ 1 000 000) — the length of the array, the number of queries and Bob’s favorite number respectively.

The second line contains n integers ai (0 ≤ ai ≤ 1 000 000) — Bob’s array.

Then m lines follow. The i-th line contains integers li and ri (1 ≤ li ≤ ri ≤ n) — the parameters of the i-th query.

Output
Print m lines, answer the queries in the order they appear in the input.

Examples

Input
6 2 3
1 2 1 1 0 3
1 6
3 5

Output
7
0

Input
5 3 1
1 1 1 1 1
1 5
2 4
1 3

Output
9
4
4

Note
In the first sample the suitable pairs of i and j for the first query are: (1, 2), (1, 4), (1, 5), (2, 3), (3, 6), (5, 6), (6, 6). Not a single of these pairs is suitable for the second query.

In the second sample xor equals 1 for all subarrays of an odd length.

题目链接:https://vjudge.net/contest/239536#problem/G

题解:由于a^a=0;
如果a^b=k;则a^k=b;
若要a[i]^a[i+1]….^a[j] )=k;
即( a[1]^a[2]^…a[i] ) ^( a[1]^a[2]^…^a[i-1]^a[i]^a[i+1]….^a[j] )。
就可以采用前缀和思想。
让flag[ a[i] ^k]表示a[i] ^k出现的次数。
---------------------
作者:wuyileiju__
来源:CSDN
原文:https://blog.csdn.net/wuyileiju__/article/details/81174608
版权声明:本文为博主原创文章,转载请附上博文链接!

AC代码

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#define maxn 1<<20
using namespace std;

int a[maxn];
int pos[maxn];
long long ans[maxn],flag[maxn];

struct query{
int l,r,id;
}Q[maxn];

bool cmp(struct query x,struct query y){
if(pos[x.l]==pos[y.l]){
return x.r<y.r;
}
return pos[x.l]<pos[y.l];
}

int n,m,k;
int L=1,R=0;
long long Ans=0;

//其它基本不变,就是add和dec函数会变化 
void add(int x){
Ans+=flag[a[x]^k];
flag[a[x]]++;
}

void del(int x){
flag[a[x]]--; //flag【a【x】】 是a【x】在前缀中出现的次数 
Ans-=flag[a[x]^k];
}

int main(){
scanf("%d%d%d",&n,&m,&k);
int sz=sqrt(n);
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
a[i]=a[i]^a[i-1]; //a[i]表示前i个值异或的结果 
pos[i]=i/sz;
}
for(int i=1;i<=m;i++){
scanf("%d%d",&Q[i].l,&Q[i].r);
Q[i].id=i;
}
sort(Q+1,Q+m+1,cmp);
flag[0]=1;
for(int i=1;i<=m;i++){
while(L<Q[i].l){
del(L-1);
L++;
}
while(L>Q[i].l){
L--;
add(L-1);
}
while(R<Q[i].r){
R++;
add(R);
}
while(R>Q[i].r){
del(R);
R--;
}
ans[Q[i].id]=Ans;
}
for(int i=1;i<=m;i++){
printf("%lld\n",ans[i]);
}
return 0;
}

 

---------------------
作者:wuyileiju__
来源:CSDN
原文:https://blog.csdn.net/wuyileiju__/article/details/81174608 

留作模板

posted on 2019-07-25 18:04  dragonpope  阅读(156)  评论(0编辑  收藏  举报