用MR实现Join逻辑的两种方法
date: 2017-09-18 12:59
需求
订单数据表 order.txt
id | date | pid | amount |
---|---|---|---|
1001 | 20150710 | P0001 | 2 |
1002 | 20150710 | P0001 | 3 |
1002 | 20150710 | P0001 | 3 |
商品信息表 product.txt
id | pname | category_id | price |
---|---|---|---|
P0001 | 小米5 | 1001 | 2 |
P0002 | 锤子T1 | 1000 | 3 |
P0003 | 锤子 | 1002 | 3 |
假如数据量巨大,两表的数据是以文件的形式存储在HDFS中,需要用mapreduce程序来实现一下SQL查询运算:
select a.id,a.date,b.name,b.category_id,b.price from t_order a join t_product b on a.pid = b.id
reduce端join算法实现
实现机制:
通过将关联的条件作为map输出的key,将两表满足join条件的数据并携带数据所来源的文件信息,发往同一个reduce task,在reduce中进行数据的串联
RJoin.java
public class RJoin {
static class RJoinMapper extends Mapper<LongWritable, Text, Text, InfoBean> {
InfoBean bean = new InfoBean();
Text k = new Text();
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String line = value.toString();
String[] fields = line.split("\t");
String pid = "";
// 通过文件名判断是哪种数据
FileSplit inputSplit = (FileSplit) context.getInputSplit();
String name = inputSplit.getPath().getName();
if (name.startsWith("order")) {
pid = fields[2];
bean.set(fields[0], fields[1], pid, Integer.parseInt(fields[3]), "", "", -1, "0");
} else {
pid = fields[0];
bean.set("", "", pid, -1, fields[1], fields[2], Float.parseFloat(fields[3]), "1");
}
k.set(pid);
context.write(k, bean);
}
}
static class RJoinReducer extends Reducer<Text, InfoBean, InfoBean, NullWritable> {
@Override
protected void reduce(Text pid, Iterable<InfoBean> values, Context context) throws IOException, InterruptedException {
InfoBean pdBean = new InfoBean();
List<InfoBean> orderBeans = new ArrayList<InfoBean>();
for (InfoBean bean : values) {
if ("1".equals(bean.getFlag())) { //产品
try {
BeanUtils.copyProperties(pdBean, bean);
} catch (IllegalAccessException | InvocationTargetException e) {
e.printStackTrace();
}
} else {
InfoBean orderBean = new InfoBean();
try {
BeanUtils.copyProperties(orderBean, bean);
orderBeans.add(orderBean);
} catch (IllegalAccessException | InvocationTargetException e) {
e.printStackTrace();
}
}
}
// 拼接两类数据形成最终结果
for (InfoBean bean : orderBeans) {
bean.setPname(pdBean.getPname());
bean.setCategory_id(pdBean.getCategory_id());
bean.setPrice(pdBean.getPrice());
context.write(bean, NullWritable.get());
}
}
}
public static void main(String[] args) throws IllegalArgumentException, IOException, ClassNotFoundException, InterruptedException {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
// 指定本程序的jar包所在的本地路径
job.setJarByClass(RJoin.class);
//System.setProperty("hadoop.home.dir", "D:\\hadoop-2.6.5");
// 指定本业务job要使用的mapper/Reducer业务类
job.setMapperClass(RJoinMapper.class);
job.setReducerClass(RJoinReducer.class);
// 指定mapper输出数据的kv类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(InfoBean.class);
job.setOutputKeyClass(InfoBean.class);
job.setOutputValueClass(NullWritable.class);
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
boolean res = job.waitForCompletion(true);
System.exit(res ? 0 : 1);
}
}
缺点
这种方式中,join的操作是在reduce阶段完成,reduce端的处理压力太大,map节点的运算负载则很低,资源利用率不高,且在reduce阶段极易产生数据倾斜
map端join算法实现
原理阐述
适用于关联表中有小表的情形;
可以将小表分发到所有的map节点,这样,map节点就可以在本地对自己所读到的大表数据进行join并输出最终结果,可以大大提高join操作的并发度,加快处理速度
实现示例
--先在mapper类中预先定义好小表,进行join
--引入实际场景中的解决方案:一次加载数据库或者用distributedcache
MapSideJoin.java
public class MapSideJoin {
static class MapSideJoinMapper extends Mapper<LongWritable, Text, InfoBean, NullWritable> {
Map<String, InfoBean> pdInfoMap = new HashMap<String, InfoBean>();
InfoBean bean = new InfoBean();
/**
* 通过阅读父类Mapper的源码,发现 setup方法是在maptask处理数据之前调用一次 可以用来做一些初始化工作
*/
@Override
protected void setup(Context context) throws IOException, InterruptedException {
BufferedReader br = new BufferedReader(new InputStreamReader(new FileInputStream("product.txt")));
String line;
while (StringUtils.isNotEmpty(line = br.readLine())) {
InfoBean pdBean = new InfoBean();
String[] fields = line.split("\t");
pdBean.set("", "", fields[0], -1, fields[1], fields[2], Float.parseFloat(fields[3]), "1");
pdInfoMap.put(fields[0], pdBean);
}
br.close();
}
// 由于已经持有完整的产品信息表,所以在map方法中就能实现join逻辑了
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String line = value.toString();
String[] fields = line.split("\t");
String pid = fields[2];
//InfoBean productBean = pdInfoMap.get(pid);
bean.setOrder_id(fields[0]);
bean.setDate(fields[1]);
bean.setPid(pid);
bean.setAmount(Integer.parseInt(fields[3]));
bean.setPname(pdInfoMap.get(pid).getPname());
bean.setCategory_id(pdInfoMap.get(pid).getCategory_id());
bean.setPrice(pdInfoMap.get(pid).getPrice());
context.write(bean, NullWritable.get());
}
}
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException, URISyntaxException {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
// 指定本程序的jar包所在的本地路径
job.setJarByClass(RJoin.class);
//System.setProperty("hadoop.home.dir", "D:\\hadoop-2.6.5");
// 指定本业务job要使用的mapper/Reducer业务类
job.setMapperClass(MapSideJoinMapper.class);
// 指定mapper输出数据的kv类型
job.setMapOutputKeyClass(InfoBean.class);
job.setMapOutputValueClass(NullWritable.class);
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
//FileInputFormat.setInputPaths(job, new Path("hdfs://mini1/mapsidejoin/input"));
//FileOutputFormat.setOutputPath(job, new Path("hdfs://mini1/mapsidejoin/output"));
// 指定需要缓存一个文件到所有的maptask运行节点工作目录
/* job.addArchiveToClassPath(archive); */// 缓存jar包到task运行节点的classpath中
/* job.addFileToClassPath(file); */// 缓存普通文件到task运行节点的classpath中
/* job.addCacheArchive(uri); */// 缓存压缩包文件到task运行节点的工作目录
/* job.addCacheFile(uri) */// 缓存普通文件到task运行节点的工作目录
// 将产品表文件缓存到task工作节点的工作目录中去
job.addCacheFile(new URI("hdfs://mini1/mapsidejoin/cache/product.txt"));
// map端join的逻辑不需要reduce阶段,设置reducetask数量为0
job.setNumReduceTasks(0);
boolean res = job.waitForCompletion(true);
System.exit(res ? 0 : 1);
}
}
InfoBean.java
public class InfoBean implements Writable {
private String order_id;
private String date;
private String pid;
private int amount;
private String pname;
private String category_id;
private float price;
// flag=0表示这个对象是封装订单表记录
// flag=1表示这个对象是封装产品信息记录
private String flag;
public void set(String order_id, String date, String pid, int amount, String pname,
String category_id, float price, String flag) {
this.order_id = order_id;
this.date = date;
this.pid = pid;
this.amount = amount;
this.pname = pname;
this.category_id = category_id;
this.price = price;
this.flag = flag;
}
public String getOrder_id() {
return order_id;
}
public void setOrder_id(String order_id) {
this.order_id = order_id;
}
public String getDate() {
return date;
}
public void setDate(String date) {
this.date = date;
}
public String getPid() {
return pid;
}
public void setPid(String pid) {
this.pid = pid;
}
public int getAmount() {
return amount;
}
public void setAmount(int amount) {
this.amount = amount;
}
public String getPname() {
return pname;
}
public void setPname(String pname) {
this.pname = pname;
}
public String getCategory_id() {
return category_id;
}
public void setCategory_id(String category_id) {
this.category_id = category_id;
}
public float getPrice() {
return price;
}
public void setPrice(float price) {
this.price = price;
}
public String getFlag() {
return flag;
}
public void setFlag(String flag) {
this.flag = flag;
}
@Override
public void readFields(DataInput in) throws IOException {
this.order_id = in.readUTF();
this.date = in.readUTF();
this.pid = in.readUTF();
this.amount = in.readInt();
this.pname = in.readUTF();
this.category_id = in.readUTF();
this.price = in.readFloat();
this.flag = in.readUTF();
}
@Override
public void write(DataOutput out) throws IOException {
out.writeUTF(order_id);
out.writeUTF(date);
out.writeUTF(pid);
out.writeInt(amount);
out.writeUTF(pname);
out.writeUTF(category_id);
out.writeFloat(price);
out.writeUTF(flag);
}
@Override
public String toString() {
return "order_id=" + order_id + ", date=" + date + ", pid=" + pid + ", amount=" + amount + ", pname="
+ pname + ", category_id=" + category_id + ", price=" + price;
}
}