| 班级 |
| ---- | ---- | ---- |
| 实验要求|
| 实验目标|掌握K近邻树实现算法 |
| 学号 |3180701331|
一、实验目的
1.理解K-近邻算法原理,能实现算法K近邻算法;
2.掌握常见的距离度量方法;
3.掌握K近邻树实现算法;
4.针对特定应用场景及数据,能应用K近邻解决实际问题。
二、实验内容
1.实现曼哈顿距离、欧氏距离、闵式距离算法,并测试算法正确性。
2.实现K近邻树算法;
3.针对iris数据集,应用sklearn的K近邻算法进行类别预测。
4.针对iris数据集,编制程序使用K近邻树进行类别预测。
三、实验报告要求
1.对照实验内容,撰写实验过程、算法及测试结果;
2.代码规范化:命名规则、注释;
3.分析核心算法的复杂度;
4.查阅文献,讨论K近邻的优缺点;
5.举例说明K近邻的应用场景。
四、实验内容以及结果
In [1]:
import math
#导入数学运算函数
from itertools import combinations
In [2]:
#计算欧式距离
def L(x,y,p=2):
# x1 = [1, 1], x2 = [5,1] 在这里,实例是两个二维特征 x1 = [1, 1], x2 = [5,1]
if len(x)==len(y) and len(x)>1:
# 当两个特征的维数相等时,并且维度大于1时。
sum=0 # 目前总的损失函数值为0
for i in range(len(x)):
sum+=math.pow(abs(x[i] - y[i]), p)
# math.pow( x, y )函数是计算x的y次方。
return math.pow(sum,1/p)# 距离公式。
else:
return 0
In [3]:
# 输入样例,该列来源于课本
x1 = [1, 1]
x2 = [5, 1]
x3 = [4, 4]
In [4]:
# 计算x1与x2和x3之间的距离
for i in range(1,5):# i从1到4
r={ '1-{}'.format(c):L(x1, c, p=i) for c in [x2, x3]}
print(min(zip(r.values(), r.keys())))# 当p=i时选出x2和我x3中距离x1最近的点
结果:
(3.0, '1-[4, 4]')
(3.0, '1-[4, 4]')
(3.0, '1-[4, 4]')
(3.0, '1-[4, 4]')
编写K-近邻算法
python实现,遍历所有数据点,找出n个距离最近的点的分类情况,少数服从多数
In [5]:
# 导包
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from collections import Counter
In [6]:
# data
iris = load_iris()# 获取python中鸢尾花Iris数据集
df = pd.DataFrame(iris.data, columns=iris.feature_names)# 将数据集使用DataFrame建表
df['label'] = iris.target# 将表的最后一列作为目标列
df.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label']
# data = np.array(df.iloc[:100, [0, 1, -1]])
In [7]:
df# 将建好的表显示在屏幕上查看
Out[7]:
sepal length | sepal width | petal length | petal width | label |
---|---|---|---|---|
0 | 5.1 | 3.5 | 1.4 | 0.2 |
1 | 4.9 | 3.0 | 1.4 | 0.2 |
2 | 4.7 | 3.2 | 1.3 | 0.2 |
3 | 4.6 | 3.1 | 1.5 | 0.2 |
4 | 5.0 | 3.6 | 1.4 | 0.2 |
5 | 5.4 | 3.9 | 1.7 | 0.4 |
6 | 4.6 | 3.4 | 1.4 | 0.3 |
7 | 5.0 | 3.4 | 1.5 | 0.2 |
8 | 4.4 | 2.9 | 1.4 | 0.2 |
9 | 4.9 | 3.1 | 1.5 | 0.1 |
10 | 5.4 | 3.7 | 1.5 | 0.2 |
11 | 4.8 | 3.4 | 1.6 | 0.2 |
12 | 4.8 | 3.0 | 1.4 | 0.1 |
13 | 4.3 | 3.0 | 1.1 | 0.1 |
14 | 5.8 | 4.0 | 1.2 | 0.2 |
15 | 5.7 | 4.4 | 1.5 | 0.4 |
16 | 5.4 | 3.9 | 1.3 | 0.4 |
17 | 5.1 | 3.5 | 1.4 | 0.3 |
18 | 5.7 | 3.8 | 1.7 | 0.3 |
19 | 5.1 | 3.8 | 1.5 | 0.3 |
20 | 5.4 | 3.4 | 1.7 | 0.2 |
21 | 5.1 | 3.7 | 1.5 | 0.4 |
22 | 4.6 | 3.6 | 1.0 | 0.2 |
23 | 5.1 | 3.3 | 1.7 | 0.5 |
24 | 4.8 | 3.4 | 1.9 | 0.2 |
25 | 5.0 | 3.0 | 1.6 | 0.2 |
26 | 5.0 | 3.4 | 1.6 | 0.4 |
27 | 5.2 | 3.5 | 1.5 | 0.2 |
28 | 5.2 | 3.4 | 1.4 | 0.2 |
29 | 4.7 | 3.2 | 1.6 | 0.2 |
... | ... | ... | ... | ... |
120 | 6.9 | 3.2 | 5.7 | 2.3 |
121 | 5.6 | 2.8 | 4.9 | 2.0 |
122 | 7.7 | 2.8 | 6.7 | 2.0 |
123 | 6.3 | 2.7 | 4.9 | 1.8 |
124 | 6.7 | 3.3 | 5.7 | 2.1 |
125 | 7.2 | 3.2 | 6.0 | 1.8 |
126 | 6.2 | 2.8 | 4.8 | 1.8 |
127 | 6.1 | 3.0 | 4.9 | 1.8 |
128 | 6.4 | 2.8 | 5.6 | 2.1 |
129 | 7.2 | 3.0 | 5.8 | 1.6 |
130 | 7.4 | 2.8 | 6.1 | 1.9 |
131 | 7.9 | 3.8 | 6.4 | 2.0 |
132 | 6.4 | 2.8 | 5.6 | 2.2 |
133 | 6.3 | 2.8 | 5.1 | 1.5 |
134 | 6.1 | 2.6 | 5.6 | 1.4 |
135 | 7.7 | 3.0 | 6.1 | 2.3 |
136 | 6.3 | 3.4 | 5.6 | 2.4 |
137 | 6.4 | 3.1 | 5.5 | 1.8 |
138 | 6.0 | 3.0 | 4.8 | 1.8 |
139 | 6.9 | 3.1 | 5.4 | 2.1 |
140 | 6.7 | 3.1 | 5.6 | 2.4 |
141 | 6.9 | 3.1 | 5.1 | 2.3 |
142 | 5.8 | 2.7 | 5.1 | 1.9 |
143 | 6.8 | 3.2 | 5.9 | 2.3 |
144 | 6.7 | 3.3 | 5.7 | 2.5 |
145 | 6.7 | 3.0 | 5.2 | 2.3 |
146 | 6.3 | 2.5 | 5.0 | 1.9 |
147 | 6.5 | 3.0 | 5.2 | 2.0 |
148 | 6.2 | 3.4 | 5.4 | 2.3 |
149 | 5.9 | 3.0 | 5.1 | 1.8 |
150 rows × 5 columns |
In [8]:
#数据进行可视化
#将标签为0、1的两种花,根据特征为长度和宽度打点表示
plt.scatter(df[:50]['sepal length'], df[:50]['sepal width'], label='0')
plt.scatter(df[50:100]['sepal length'], df[50:100]['sepal width'], label='1')
plt.xlabel('sepal length')
plt.ylabel('sepal width')
plt.legend()
Out[8]:
<matplotlib.legend.Legend at 0xb3015c0>
In [9]:
#取数据,并且分成训练和测试集合
data = np.array(df.iloc[:100, [0, 1, -1]])
#按行索引,取出第0列第1列和最后一列,即取出sepal长度、宽度和标签
X, y = data[:,:-1], data[:,-1]#X为sepal length,sepal width y为标签
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
# train_test_split函数用于将矩阵随机划分为训练子集和测试子集
In [10]:
class KNN:
def __init__(self, X_train, y_train, n_neighbors=3, p=2):
"""
parameter: n_neighbors 临近点个数
parameter: p 距离度量
"""
self.n = n_neighbors#临*点个数
self.p = p#距离度量
self.X_train = X_train
self.y_train = y_train
def predict(self, X):
# 取出n个点,放入空的列表,列表中存放预测点与训练集点的距离及其对应标签
# 取距离最小的k个点:先取前k个,然后遍历替换
# knn_list存“距离”和“label”
knn_list = []
for i in range(self.n):
#np.linalg.norm 求范数
dist = np.linalg.norm(X - self.X_train[i], ord=self.p)
knn_list.append((dist, self.y_train[i]))
#再取出训练集剩下的点,然后与n_neighbor个点比较大叫,将距离大的点更新
#保证knn_list列表中的点是距离最小的点
for i in range(self.n, len(self.X_train)):
max_index = knn_list.index(max(knn_list, key=lambda x: x[0]))
dist = np.linalg.norm(X - self.X_train[i], ord=self.p)
if knn_list[max_index][0] > dist:
knn_list[max_index] = (dist, self.y_train[i])
# 统计
# 统计分类最多的点,确定预测数据的分类
knn = [k[-1] for k in knn_list]
#counter为计数器,按照标签计数
count_pairs = Counter(knn)
#排序
max_count = sorted(count_pairs, key=lambda x:x)[-1]
return max_count
#预测的正确率
def score(self, X_test, y_test):
right_count = 0
n = 10
for X, y in zip(X_test, y_test):
label = self.predict(X)
if label == y:
right_count += 1
return right_count / len(X_test)
In [11]:
clf = KNN(X_train, y_train)# 调用KNN算法进行计算
In [12]:
clf.score(X_test, y_test)# 计算正确率
Out[12]:1.0
In [13]:
#预测点
test_point = [6.0, 3.0]
#预测结果
print('Test Point: {}'.format(clf.predict(test_point)))
结果:Test Point: 1.0
In [14]:
plt.scatter(df[:50]['sepal length'], df[:50]['sepal width'], label='0')
plt.scatter(df[50:100]['sepal length'], df[50:100]['sepal width'], label='1')
#打印预测点
plt.plot(test_point[0], test_point[1], 'bo', label='test_point')
plt.xlabel('sepal length')
plt.ylabel('sepal width')
plt.legend()
Out[14]:
<matplotlib.legend.Legend at 0xb6fa240>
scikitlearn
In [15]:
from sklearn.neighbors import KNeighborsClassifier
In [16]:
clf_sk = KNeighborsClassifier()
clf_sk.fit(X_train, y_train)
Out[16]:
KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
metric_params=None, n_jobs=1, n_neighbors=5, p=2,
weights='uniform')
In [17]:
clf_sk.score(X_test, y_test)
Out[17]:1.0
sklearn.neighbors.KNeighborsClassifier
n_neighbors: 临近点个数
p: 距离度量
algorithm: 近邻算法,可选{'auto', 'ball_tree', 'kd_tree', 'brute'}
weights: 确定近邻的权重
kd树
In [18]:
# kd-tree每个结点中主要包含的数据结构如下
class KdNode(object):
def __init__(self, dom_elt, split, left, right):
self.dom_elt = dom_elt # k维向量节点(k维空间中的一个样本点)
self.split = split # 整数(进行分割维度的序号)
self.left = left # 该结点分割超平面左子空间构成的kd-tree
self.right = right # 该结点分割超平面右子空间构成的kd-tree
class KdTree(object):
def __init__(self, data):
k = len(data[0]) # 数据维度
def CreateNode(split, data_set): # 按第split维划分数据集exset创建KdNode
if not data_set: # 数据集为空
return None
# key参数的值为一个函数,此函数只有一个参数且返回一个值用来进行比较
# operator模块提供的itemgetter函数用于获取对象的哪些维的数据,参数为需要获取的数据在对象
#data_set.sort(key=itemgetter(split)) # 按要进行分割的那一维数据排序
data_set.sort(key=lambda x: x[split])
split_pos = len(data_set) // 2 # //为Python中的整数除法
median = data_set[split_pos] # 中位数分割点
split_next = (split + 1) % k # cycle coordinates
# 递归的创建kd树
return KdNode(median, split,
CreateNode(split_next, data_set[:split_pos]), # 创建左子树
CreateNode(split_next, data_set[split_pos + 1:])) # 创建右子树
self.root = CreateNode(0, data) # 从第0维分量开始构建kd树,返回根节点
# KDTree的前序遍历
def preorder(root):
print (root.dom_elt)
if root.left: # 节点不为空
preorder(root.left)
if root.right:
preorder(root.right)
In [19]:
# 对构建好的kd树进行搜索,寻找与目标点最近的样本点:
from math import sqrt
from collections import namedtuple
# 定义一个namedtuple,分别存放最近坐标点、最近距离和访问过的节点数
result = namedtuple("Result_tuple", "nearest_point nearest_dist nodes_visited")
def find_nearest(tree, point):
k = len(point) # 数据维度
def travel(kd_node, target, max_dist):
if kd_node is None:
return result([0] * k, float("inf"), 0) # python中用float("inf")和float("-inf")表示正负
nodes_visited = 1
s = kd_node.split # 进行分割的维度
pivot = kd_node.dom_elt # 进行分割的“轴”
if target[s] <= pivot[s]: # 如果目标点第s维小于分割轴的对应值(目标离左子树更近)
nearer_node = kd_node.left # 下一个访问节点为左子树根节点
further_node = kd_node.right # 同时记录下右子树
else: # 目标离右子树更近
nearer_node = kd_node.right # 下一个访问节点为右子树根节点
further_node = kd_node.left# 同时记录下右子树
temp1 = travel(nearer_node, target, max_dist) # 进行遍历找到包含目标点的区域
nearest = temp1.nearest_point # 以此叶结点作为“当前最近点”
dist = temp1.nearest_dist # 更新最近距离
nodes_visited += temp1.nodes_visited
if dist < max_dist:
max_dist = dist # 最近点将在以目标点为球心,max_dist为半径的超球体内
temp_dist = abs(pivot[s] - target[s]) # 第s维上目标点与分割超平面的距离
if max_dist < temp_dist: # 判断超球体是否与超平面相交
return result(nearest, dist, nodes_visited) # 不相交则可以直接返回,不用继续判断
#----------------------------------------------------------------------
# 计算目标点与分割点的欧氏距离
temp_dist = sqrt(sum((p1 - p2) ** 2 for p1, p2 in zip(pivot, target)))
if temp_dist < dist: # 如果“更近”
nearest = pivot # 更新最近点
dist = temp_dist # 更新最近距离
max_dist = dist # 更新超球体半径
# 检查另一个子结点对应的区域是否有更近的点
temp2 = travel(further_node, target, max_dist)
nodes_visited += temp2.nodes_visited
if temp2.nearest_dist < dist: # 如果另一个子结点内存在更近距离
nearest = temp2.nearest_point # 更新最近点
dist = temp2.nearest_dist # 更新最近距离
return result(nearest, dist, nodes_visited)
return travel(tree.root, point, float("inf")) # 从根节点开始递归
In [20]:
data = [[2,3],[5,4],[9,6],[4,7],[8,1],[7,2]]
kd = KdTree(data)
preorder(kd.root)
结果:
[7, 2]
[5, 4]
[2, 3]
[4, 7]
[9, 6]
[8, 1]
In [21]:
from time import clock
from random import random
# 产生一个k维随机向量,每维分量值在0~1之间
def random_point(k):
return [random() for _ in range(k)]
# 产生n个k维随机向量
def random_points(k, n):
return [random_point(k) for _ in range(n)]
In [22]:
ret = find_nearest(kd, [3,4.5])
print (ret)
结果:
Result_tuple(nearest_point=[2, 3], nearest_dist=1.8027756377319946, nodes_visited=4)
In [23]:
N = 400000
t0 = clock()
kd2 = KdTree(random_points(3, N)) # 构建包含四十万个3维空间样本点的kd树
ret2 = find_nearest(kd2, [0.1,0.5,0.8]) # 四十万个样本点中寻找离目标最近的点
t1 = clock()
print ("time: ",t1-t0, "s")
print (ret2)
结果:
7.299844505209247 s
Result_tuple(nearest_point=[0.10505669630674175, 0.49542598718931097, 0.803316691954
3026], nearest_dist=0.007582362181450973, nodes_visited=53)
五、实验小结
本次实验,用python实现了曼哈顿距离、欧氏距离、闵式距离算法,并测试了算法正确性。理解了K-近邻算法使用的模型实际上对应于对特征空间的划分,模型由三个基本要素决定——距离度量、k值选择(k值的选取,既不能太大,也不能太小,何值为最好,需要实验调整参数确定!)、分类决策规则。其准确性高,对异常值和噪声有较高的容忍度。但是用这个算法计算量较大,对内存的需求也较大。适用数据范围是:数值型和标称型。
K-近邻算法应用可以针对约会网站的数据分类,用于改进约会网站的配对效果。也可以运用在手写数字识别中。
比起其他机器学习方法,k-近邻算法是最简单最有效的分类数据算法,使用算法时必须有接近实际数据的训练样本数据。事实上k决策树是k-近邻算法的优化版本,比起前者,决策树有效减少了储存空间和计算空间的开销,老师也刚为我们讲解了k决策树也是刚了解想要运用,后期需继续深入学习!