WuliWuliiii
凤兮凤兮归故乡 遨游四海求其凰

题目链接

  与最长K可重区间问题一样的解法,但是这道题却有很多需要注意的地方,譬如就是精度问题,一开始没考虑到sprt()里面的乘会爆了精度,然后交上去竟然是TLE,然后找的原因方向也没对,最后TLE了好几次,猜想会不会是爆了精度的原因然后交了,A。

  这道题有很多处地方都特别的需要注意,尤其是拆点,还有一定要离散化一下(加速)。不离散化的化,写好一点有概率不T,反正我之前没找到精度问题的时候就是改了离散化。然后这里有一种奇怪的东西,叫做负环,我们在这里需要特别的考虑进去,因为题目中说到的是开线段的个数不大于K,而不是点集“≤K”,所以,我们得去处理这一层关系。拆点,一种特殊的拆点,我们对X区间(x1, x2)去改变成(x1<<1|1, x2<<1)但是有时候像是(5,5)这类的情况,我们又需要特别的再去反转一下x1、x2.

  然后我们拆点完成就可以去跑了,Dijkstra还是SPFA都是可以跑的,Dijkstra快得多而已。

#include <iostream>
#include <cstdio>
#include <cmath>
#include <string>
#include <cstring>
#include <algorithm>
#include <limits>
#include <vector>
#include <stack>
#include <queue>
#include <set>
#include <map>
#define lowbit(x) ( x&(-x) )
#define pi 3.141592653589793
#define e 2.718281828459045
#define INF 0x3f3f3f3f3f3f3f3f
#define HalF (l + r)>>1
#define lsn rt<<1
#define rsn rt<<1|1
#define Lson lsn, l, mid
#define Rson rsn, mid+1, r
#define QL Lson, ql, qr
#define QR Rson, ql, qr
#define myself rt, l, r
#define MP(x, y) make_pair(x, y)
using namespace std;
typedef unsigned long long ull;
typedef long long ll;
const int maxN = 1e3 + 7, S = 0;
int N, K, T, _UP, a[maxN][2];
ll h[maxN], dist[maxN], lsan[maxN], dis[maxN];
struct Eddge
{
    int nex, u, v;
    ll flow, cost;
    Eddge(int a=-1, int b=0, int c=0, ll d=0, ll f=0):nex(a), u(b), v(c), flow(d), cost(f) {}
};
vector<Eddge> G[maxN];
inline void _add(int u, int v, ll flow, ll cost)
{
    G[u].push_back(Eddge((int)G[v].size(), u, v, flow, cost));
    G[v].push_back(Eddge((int)G[u].size() - 1, v, u, 0, -cost));
}
struct node
{
    int id; ll val;
    node(int a=0, ll b=0):id(a), val(b) {}
    friend bool operator < (node e1, node e2) { return e1.val > e2.val; }
};
priority_queue<node> Q;
int preP[maxN], preE[maxN];
inline ll MaxFlow_MinCost(ll Flow)
{
    ll ans = 0;
    for(int i=0; i<=T; i++) h[i] = 0;
    while(Flow)
    {
        for(int i=0; i<=T; i++) dist[i] = INF;
        dist[S] = 0;
        while(!Q.empty()) Q.pop();
        Q.push(node(S, 0));
        while(!Q.empty())
        {
            node now = Q.top(); Q.pop();
            int u = now.id;
            if(dist[u] < now.val) continue;
            int len = (int)G[u].size();
            for(int i=0, v; i<len; i++)
            {
                v = G[u][i].v; ll f = G[u][i].flow, c = G[u][i].cost;
                if(f && dist[v] > dist[u] + c - h[v] + h[u])
                {
                    dist[v] = dist[u] + c - h[v] + h[u];
                    preP[v] = u; preE[v] = i;
                    Q.push(node(v, dist[v]));
                }
            }
        }
        if(dist[T] == INF) break;
        for(int i=0; i<=T; i++) h[i] += dist[i];
        ll Capa = Flow;
        for(int u=T; u != S; u = preP[u]) Capa = min(Capa, G[preP[u]][preE[u]].flow);
        Flow -= Capa;
        ans += Capa * h[T];
        for(int u = T; u != S; u = preP[u])
        {
            Eddge &E = G[preP[u]][preE[u]];
            E.flow -= Capa;
            G[E.v][E.nex].flow += Capa;
        }
    }
    return -ans;
}
inline void init()
{
    T = _UP + 1;
    //for(int i=0; i<=T; i++) G[i].clear();
}
int main()
{
//    freopen("employee.in", "r", stdin);
//    freopen("employee.out", "w", stdout);
    scanf("%d%d", &N, &K);
    _UP = 1;
    for(int i=1, y1, y2; i<=N; i++)
    {
        scanf("%d%d%d%d", &a[i][0], &y1, &a[i][1], &y2);
        dis[i] = sqrt(1LL * (a[i][0] - a[i][1]) * (a[i][0] - a[i][1]) + 1LL * (y1 - y2) * (y1 - y2));
        if(a[i][0] > a[i][1]) swap(a[i][0], a[i][1]);
        a[i][0] = (a[i][0] << 1) | 1; a[i][1] = a[i][1] << 1;
        if(a[i][0] > a[i][1]) swap(a[i][0], a[i][1]);
        lsan[(i<<1) - 1] = a[i][0];
        lsan[i<<1] = a[i][1];
    }
    sort(lsan + 1, lsan + (N<<1) + 1);
    _UP = (int)(unique(lsan + 1, lsan + (N<<1) + 1) - lsan - 1);
    init();
    for(int i=0; i<=_UP; i++) _add(i, i + 1, K, 0);
    for(int i=1, x1, x2; i<=N; i++)
    {
        x1 = (int)(lower_bound(lsan + 1, lsan + _UP + 1, a[i][0]) - lsan);
        x2 = (int)(lower_bound(lsan + 1, lsan + _UP + 1, a[i][1]) - lsan);
        _add(x1, x2, 1, -dis[i]);
    }
    printf("%lld\n", MaxFlow_MinCost(K));
    return 0;
}
View Code

 

posted on 2019-08-05 08:54  唔哩Wulili  阅读(261)  评论(0编辑  收藏  举报